Advertisement

Erkenntnis

, Volume 78, Issue 3, pp 487–522 | Cite as

Carnap’s Early Semantics

  • Georg Schiemer
Original Paper

Abstract

This paper concerns Carnap’s early contributions to formal semantics in his work on general axiomatics between 1928 and 1936. Its main focus is on whether he held a variable domain conception of models. I argue that interpreting Carnap’s account in terms of a fixed domain approach fails to describe his premodern understanding of formal models. By drawing attention to the second part of Carnap’s unpublished manuscript Untersuchungen zur allgemeinen Axiomatik, an alternative interpretation of the notions ‘model’, ‘model extension’ and ‘submodel’ in his theory of axiomatics is presented. Specifically, it is shown that Carnap’s early model theory is based on a convention to simulate domain variation that is not identical but logically comparable to the modern account.

Keywords

Axiom System Background Language Axiomatic Theory Peano Arithmetic Primitive Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research on this article was partly funded by the Austrian Science Fund (FWF): J3158. Earlier drafts of this paper were presented to the SoCal HPLM Group at UC Irvine, in the Logisches Café - colloquium at the University of Vienna, at GAP.7 in Bremen as well as at Epsa2009 in Amsterdam. I thank the members of the respective audiences for useful comments. I am especially indebted to Michael Friedman, Erich Reck, Steve Awodey, Ilkka Niiniluoto, and Richard Heinrich for helpful discussions and valuable feedback. I also wish to thank two anonymous referees for their comments and suggestions that have substantially improved this paper.

References

  1. Andrews, P. B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Awodey, S. (2007). Carnap’s quest for analyticity: The Studies in Semantics. In M. Friedman & R. Creath (Eds.), The Cambridge Companion to Carnap (pp. 226–247). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Awodey, S., & Carus, A. (2001). Carnap, completeness, and categoricity: The Gabelbarkeitssatz of 1928. Erkenntnis, 54, 145–172.Google Scholar
  4. Awodey, S., & Carus, A. (2007). Carnap’s dream: Gödel, Wittgenstein and the Logical Syntax. Synthese, 159, 23–45.CrossRefGoogle Scholar
  5. Awodey, S., & Reck, E. (2002). Completeness and categoricity, part 1: 19th century axiomatics to 20th century metalogic. History and Philosophy of Logic, 23, 1–30.CrossRefGoogle Scholar
  6. Bachmann, F. (1934). Untersuchungen zur Grundlegung der Arithmetik mit besonderer Beziehung auf Dedekind, Frege und Russell. Bruck Buch-und Steindruckerei M. Kramer: Münster.Google Scholar
  7. Bachmann, F. (1936). Die Fragen der Abhängigkeit und der Entbehrlichkeit von Axiomen in Axiomensystemen, in denen ein Extremalaxiom auftritt. Actes du Congrés International de Philosophie Scientifique, 7, 39–53.Google Scholar
  8. Bays, T. (2001). On Tarski on models. Journal of Symbolic Logic, 66, 1701–1726.CrossRefGoogle Scholar
  9. Behmann, H. (1927). Mathematik und Logik. Leipzig und Berlin: Teubner.Google Scholar
  10. Bonk, T., & Mosterin, J. (2000). Untersuchungen zur allgemeinen Axiomatik. Chapt. Einleitung, pp. 1–54. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  11. Carnap, R. (1928). Der Logische Aufbau der Welt. Berlin-Schlachtensee: Weltkreis-Verlag. translated as: (1967). The Logical Structure of the World. Berkeley/Los Angeles: University of California Press.Google Scholar
  12. Carnap, R. (1929). Abriss der Logistik. Wien: Springer.CrossRefGoogle Scholar
  13. Carnap, R. (1930). Bericht über Untersuchungen zur allgemeinen Axiomatik. Erkenntnis, 1, 303–307.CrossRefGoogle Scholar
  14. Carnap, R. (1931). Die logizistische Grundlegung der Mathematik. Erkenntnis, 2, 91–105. translated in: P. Benacerraf, & H. Putnam (Eds.) (1983). Philosophy of mathematics—Selected readings (2nd ed., pp. 41–52). Cambridge: Cambridge University Press.Google Scholar
  15. Carnap, R. (1934). Logische Syntax der Sprache. Wien: Springer. translated as: (2002). The Logical Syntax of Language. London: Open Court.Google Scholar
  16. Carnap, R. (1935). Ein Gültigkeitskriterium für die Sätze der klassischen Mathematik. Monatshefte für Mathematik und Physik, 42, 163–190.CrossRefGoogle Scholar
  17. Carnap, R. (1942). Introduction of Semantics. Cambridge, MA: Harvard University Press.Google Scholar
  18. Carnap, R. (1943). Formalization of Logic. Cambridge, MA: Harvard University Press.Google Scholar
  19. Carnap, R. (1947). Meaning and Necessity: A Study in Semantics and Modal Logic. Chicago: University of Chicago Press.Google Scholar
  20. Carnap, R. (2000). Untersuchungen zur allgemeinen Axiomatik. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  21. Carnap, R., & Bachmann, F. (1936), Über Extremalaxiome. Erkenntnis, 6, 166–188. Quoted after the English translation in: 1981, History and Philosophy of Logic, 2, 67–85.Google Scholar
  22. Coffa, A. (1991). The Semantic Tradition from Kant to Carnap. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Corcoran, J. (1980). Categoricity. History and Philosophy of Logic, 1, 187–207.CrossRefGoogle Scholar
  24. Corcoran, J., & Sangüillo, J. M. (2009). The absence of multiple universes of discourse in the 1936 Tarski consequence-definition paper. Manuscript.Google Scholar
  25. Creath, R. (1990). The unimportance of semantics. In M. F. A. Fine, & Wessels, L. (Eds.), Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, Vol. 2. East Lansing: Philosophy of Science Association.Google Scholar
  26. Enderton, H. B. (2001). A Mathematical Introduction to Logic. San Diego: Hartcourt/Academic Press.Google Scholar
  27. Goldfarb, W. (1979). Logic in the twenties: The nature of the quantifier. Journal of Symbolic Logic, 44, 351–368.CrossRefGoogle Scholar
  28. Goldfarb, W. (2005). On Gödel’s way in: The influence of Rudolf Carnap. Bulletin of Symbolic Logic, 11/2, 185–193.CrossRefGoogle Scholar
  29. Goméz-Torrente, M. (2009). Rereading Tarski on logical consequence. Review of Symbolic Logic, 2/2, 249–297.CrossRefGoogle Scholar
  30. Hilbert, D. (1910). The Foundations of Geometry. Chicago: Open Court.Google Scholar
  31. Hilbert, D., & Bernays, B. (1934). Grundlagen der Mathematik (Vol. 1). Berlin: Springer.Google Scholar
  32. Hintikka, J. (1991). Carnap, the universality of language and extremality axioms. Erkenntnis, 35, 325–336.Google Scholar
  33. Hintikka, J. (1992). Carnap’s work in the foundations of logic and mathematics in a historical perspective. Synthese, 93, 167–189.CrossRefGoogle Scholar
  34. Lavers, G. (2008). Carnap, formalism, and informal rigour. Philosophia Mathematica, 3/16, 4–24.Google Scholar
  35. Mancosu, P. (2006) Tarski on models and logical consequence. In J. Ferreirós & J. Gray (Eds.), The architecture of modern mathematics: Essays in history and philosophy (pp. 209–237). Oxford: Oxford University Press.Google Scholar
  36. Mancosu, P. (2010). Fixed- versus variable-domain interpretations of Tarski’s account of logical consequence. Philosophy Compass, 5/9, 745–759.CrossRefGoogle Scholar
  37. Reck, E. (2007). Carnap and modern logic. In M. Friedman & R. Creath (Eds.), The Cambridge Companion to Carnap (pp. 176–199). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Reck, E. (forthcoming). Developments in logic: Carnap, Gödel, and Tarski. In M. Beaney (Ed.), The Oxford Handbook of the History of Analytic Philosophy. Oxford: Oxford University Press.Google Scholar
  39. Schiemer, G. (2010). Fraenkel’s axiom of restriction: Axiom choice, intended models and categoricity. In B. Löwe & T. Müller (Eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice (pp. 307–340). London: College Publications.Google Scholar
  40. Schilpp, P. (Ed.) (1963). The philosophy of Rudolf Carnap, Vol. XI of The Library of Living Philosophers. LaSalle: Open Court.Google Scholar
  41. Shapiro, S. (1991). Foundations without foundationalism—A Case for Second-Order Logic. Oxford: Oxford University Press.Google Scholar
  42. Tarski, A. (1936). Über den Begriff der Logischen Folgerung. Actes du Congrés International de Philosophie Scientifique, 7, 1–11.Google Scholar
  43. van Heijenoort, J. (1967). Logic as calculus and logic as language. Boston Studies in the Philosophy of Science, 3, 440–446.CrossRefGoogle Scholar
  44. Whitehead, N. A., & Russell, B. (1962). Principia mathematica, 3 volumes. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Munich Center for Mathematical Philosophy (MCMP)Ludwig-Maximilians-Universität (LMU)MunichGermany

Personalised recommendations