The Environmentalist

, Volume 31, Issue 2, pp 97–106 | Cite as

Clinical aspects of static magnetic field effects on circulatory system

  • Chiyoji Ohkubo
  • Hideyuki Okano


Increased knowledge of the magnetic field influence on hemodynamic function may have significant therapeutic potential and possible health effects. For example, magnetic field therapy using moderate intensity static magnetic fields (SMF) in the mT range (in particular, 1–600 mT) could be useful for circulatory diseases, including ischemic pain, inflammation, and hypertension, primarily due to the modulation of blood flow and/or blood pressure through the nervous system. We suggested that the mechanisms of SMF effects on the circulatory system in the mT range could be mediated by suppressing or enhancing the action of biochemical effectors, thereby inducing homeostatic effects biphasically. The potent mechanisms of SMF effects have often been linked to nitric oxide pathway, Ca2+-dependent pathway, sympathetic nervous system (e.g., BRS and the action of sympathetic agonists or antagonists), and neurohumoral regulatory system (e.g., production and secretion of angiotensin II and aldosterone). Thus, this review mainly focuses on the experimental studies of SMF effects on the circulatory system in animals and may provide the physiological basis for future clinical investigations of SMF therapy.


SMF Circulation Blood pressure In vivo Animals 


  1. Abdelmelek H, Molnar A, Servais S, Cottet-Emard JM, Pequignot JM, Favier R, Sakly M (2006) Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm 113:821–827CrossRefGoogle Scholar
  2. Asano M, Yoshida K, Tatai K (1965) Microphotoelectric plethysmography using a rabbit ear chamber. J Appl Physiol 20:1056–1062Google Scholar
  3. Bachmann S, Bosse HM, Mundel P (1995) Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 268:F885–F898Google Scholar
  4. Berdeaux A (1993) Nitric oxide: an ubiquitous messenger. Fundam Clin Pharmacol 7:401–411CrossRefGoogle Scholar
  5. Brix G, Strieth S, Strelczyk D, Dellian M, Griebel J, Eichhorn ME, Andrā W, Bellemann ME (2008) Static magnetic fields affect capillary flow of red blood cells in striated skin muscle. Microcirculation 15:15–26CrossRefGoogle Scholar
  6. Campese VM, Ye S, Zhong H, Yanamadala V, Ye Z, Chiu J (2004) Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol 287:H695–H703CrossRefGoogle Scholar
  7. Chou TC, Yen MH, Li CY, Ding YA (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648Google Scholar
  8. Colbert AP, Markov MS, Souder JS (2008) Static magnetic field therapy: dosimetry considerations. J Altern Complement Med 14:577–582CrossRefGoogle Scholar
  9. Colbert AP, Wahbeh H, Harling N, Connelly E, Schiffke HC, Forsten C, Gregory WL, Markov MS, Souder JJ, Elmer P, King V (2009) Static magnetic field therapy: a critical review of treatment parameters. Evid Based Complement Alternat Med 6:133–139CrossRefGoogle Scholar
  10. DeLano FA, Balete R, Schmid-Schönbein GW (2005) Control of oxidative stress in microcirculation of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 288:H805–H812CrossRefGoogle Scholar
  11. DeLano FA, Parks DA, Ruedi JM, Babior BM, Schmid-Schönbein GW (2006) Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat. Microcirculation 13:551–566CrossRefGoogle Scholar
  12. Dobson J, St Pierre T, Wieser HG, Fuller M (2000a) Changes in paroxysmal brainwave patterns of epileptics by weak-field magnetic stimulation. Bioelectromagnetics 21:94–99CrossRefGoogle Scholar
  13. Dobson J, St Pierre TG, Schultheiss-Grassi PP, Wieser HG, Kuster N (2000b) Analysis of EEG data from weak-field magnetic stimulation of mesial temporal lobe epilepsy patients. Brain Res 868:386–391CrossRefGoogle Scholar
  14. Fuller M, Dobson J, Wieser HG, Moser S (1995) On the sensitivity of the human brain to magnetic fields: evocation of epileptiform activity. Brain Res Bull 36:155–159CrossRefGoogle Scholar
  15. Fuller M, Wilson CL, Velasco AL, Dunn JR, Zoeger J (2003) On the confirmation of an effect of magnetic fields on the interictal firing rate of epileptic patients. Brain Res Bull 60:43–52CrossRefGoogle Scholar
  16. Gmitrov J, Ohkubo C (2002a) Artificial static and geomagnetic field interrelated impact on cardiovascular regulation. Bioelectromagnetics 23:329–338CrossRefGoogle Scholar
  17. Gmitrov J, Ohkubo C (2002b) Effects of 12 mT static magnetic field on sympathetic Verapamil protective effect on natural and artificial magnetic field cardiovascular impact. Bioelectromagnetics 23:531–541CrossRefGoogle Scholar
  18. Gmitrov J, Ohkubo C, Okano H (2002) Effect of 0.25 T static magnetic field on microcirculation in rabbits. Bioelectromagnetics 23:224–229CrossRefGoogle Scholar
  19. Gorczyńska E, Wegrzynowicz R (1989) Effect of static magnetic field on some enzymes activities in rats. J Hyg Epidemiol Microbiol Immunol 33:149–155Google Scholar
  20. Gorman AA, Rodgers MA (1992) Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol B 14:159–176CrossRefGoogle Scholar
  21. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148Google Scholar
  22. Gupta A, Weeks AR, Richie SM (2008) Simulation of elevated T-waves of an ECG inside a static magnetic field (MRI). IEEE Trans Biomed Eng 55:1890–1896CrossRefGoogle Scholar
  23. Henry SL, Concannon MJ, Yee GJ (2008) The effect of magnetic fields on wound healing: experimental study and review of the literature. Eplasty 8:e40Google Scholar
  24. Hinman MR (2002) Comparative effect of positive and negative static magnetic fields on heart rate and blood pressure in healthy adults. Clin Rehabil 16:669–674CrossRefGoogle Scholar
  25. International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–514CrossRefGoogle Scholar
  26. Kim S, Chung YA, Lee CU, Chae JH, Juh R, Jeong J (2010) Target-specific rCBF changes induced by 0.3-T static magnetic field exposure on the brain. Brain Res 1317:211–217CrossRefGoogle Scholar
  27. Kuipers NT, Sauder CL, Ray CA (2007) Influence of static magnetic fields on pain perception and sympathetic nerve activity in humans. J Appl Physiol 102:1410–1415CrossRefGoogle Scholar
  28. Li H, Förstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254CrossRefGoogle Scholar
  29. Li Z, Tam EW, Mak AF, Lau RY (2007) Wavelet analysis of the effects of static magnetic field on skin blood flowmotion: investigation using an in vivo rat model. In Vivo 21:61–68Google Scholar
  30. Lovsund P, Oberg PA, Nilsson SE (1979) Influence on vision of extremely low frequence electromagnetic fields. Industrial measurements, magnetophosphene studies volunteers and intraretinal studies in animals. Acta Ophthalmol (Copenh) 57:812–821CrossRefGoogle Scholar
  31. Ma XL, Gao F, Nelson AH, Lopez BL, Christopher TA, Yue TL, Barone FC (2001) Oxidative inactivation of nitric oxide and endothelial dysfunction in stroke-prone spontaneous hypertensive rats. J Pharmacol Exp Ther 298:879–885Google Scholar
  32. Markov MS (2007a) Magnetic field therapy: a review. Electromagn Biol Med 26:1–23CrossRefGoogle Scholar
  33. Markov MS (2007b) Therapeutic application of static magnetic fields. Environmentalist 27:457–463CrossRefGoogle Scholar
  34. Markov MS (2009) What need to be known about the therapy with static magnetic fields. Environmentalist 29:169–176CrossRefGoogle Scholar
  35. Markov MS (2010) Angiogenesis, magnetic fields and ‘window effects’. Cardiology 117:54–56CrossRefGoogle Scholar
  36. Martel GF, Andrews SC, Roseboom CG (2002) Comparison of static and placebo magnets on resting forearm blood flow in young, healthy men. J Orthop Sports Phys Ther 32:518–524Google Scholar
  37. Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E (2010) Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics 31:296–301CrossRefGoogle Scholar
  38. Mayrovitz HN, Groseclose EE (2005) Effects of a static magnetic field of either polarity on skin microcirculation. Microvasc Res 69:24–27CrossRefGoogle Scholar
  39. Mayrovitz HN, Groseclose EE, Markov M, Pilla AA (2001) Effects of permanent magnets on resting skin blood perfusion in healthy persons assessed by laser Doppler flowmetry and imaging. Bioelectromagnetics 22:494–502CrossRefGoogle Scholar
  40. Mayrovitz HN, Groseclose EE, King D (2005) No effect of 85 mT permanent magnets on laser-Doppler measured blood flow response to inspiratory gasps. Bioelectromagnetics 26:331–335CrossRefGoogle Scholar
  41. McKay JC, Prato FS, Thomas AW (2007) A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics 28:81–98CrossRefGoogle Scholar
  42. McNamee DA, Legros AG, Krewski DR, Wisenberg G, Prato FS, Thomas AW (2009) A literature review: the cardiovascular effects of exposure to extremely low frequency electromagnetic fields. Int Arch Occup Environ Health 82:919–933CrossRefGoogle Scholar
  43. Morris CE, Skalak TC (2005) Static magnetic fields alter arteriolar tone in vivo. Bioelectromagnetics 26:1–9CrossRefGoogle Scholar
  44. Morris CE, Skalak TC (2007) Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. J Appl Physiol 103:629–636CrossRefGoogle Scholar
  45. Morris CE, Skalak TC (2008) Acute exposure to a moderate strength static magnetic field reduces edema formation in rats. Am J Physiol Heart Circ Physiol 294:H50–H57CrossRefGoogle Scholar
  46. Ohkubo C, Xu S (1997) Acute effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 11:221–225Google Scholar
  47. Ohkubo C, Okano H, Ushiyama A, Masuda H (2007) EMF effects on microcirculatory system. Environmentalist 27:395–402CrossRefGoogle Scholar
  48. Okano H, Ohkubo C (2001) Modulatory effects of static magnetic fields on blood pressure in rabbits. Bioelectromagnetics 22:408–418CrossRefGoogle Scholar
  49. Okano H, Ohkubo C (2003a) Anti-pressor effects of whole body exposure to static magnetic field on pharmacologically induced hypertension in conscious rabbits. Bioelectromagnetics 24:139–147CrossRefGoogle Scholar
  50. Okano H, Ohkubo C (2003b) Effects of static magnetic fields on plasma levels of angiotensin II and aldosterone associated with arterial blood pressure in genetically hypertensive rats. Bioelectromagnetics 24:403–412CrossRefGoogle Scholar
  51. Okano H, Ohkubo C (2005a) Effects of neck exposure to 5.5 mT static magnetic field on pharmacologically modulated blood pressure in conscious rabbits. Bioelectromagnetics 26:469–480CrossRefGoogle Scholar
  52. Okano H, Ohkubo C (2005b) Exposure to a moderate intensity static magnetic field enhances the hypotensive effect of a calcium channel blocker in spontaneously hypertensive rats. Bioelectromagnetics 26:611–623CrossRefGoogle Scholar
  53. Okano H, Ohkubo C (2007) Effects of 12 mT static magnetic field on sympathetic agonist-induced hypertension in Wistar rats. Bioelectromagnetics 28:369–378CrossRefGoogle Scholar
  54. Okano H, Gmitrov J, Ohkubo C (1999) Biphasic effects of static magnetic fields on cutaneous microcirculation in rabbits. Bioelectromagnetics 20:161–171CrossRefGoogle Scholar
  55. Okano H, Masuda H, Ohkubo C (2005a) Effects of 25 mT static magnetic field on blood pressure in reserpine-induced hypotensive Wistar-Kyoto rats. Bioelectromagnetics 26:36–48CrossRefGoogle Scholar
  56. Okano H, Masuda H, Ohkubo C (2005b) Decreased plasma levels of nitric oxide metabolites, angiotensin II, and aldosterone in spontaneously hypertensive rats exposed to 5 mT static magnetic field. Bioelectromagnetics 26:161–172CrossRefGoogle Scholar
  57. Prato FS, Frappier JR, Shivers RR, Kavaliers M, Zabel P, Drost D, Lee TY (1990) Magnetic resonance imaging increases the blood-brain barrier permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats. Brain Res 523:301–304CrossRefGoogle Scholar
  58. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923CrossRefGoogle Scholar
  59. Ratterman R, Secrest J, Norwood B, Ch’ien AP (2002) Magnet therapy: what’s the attraction? J Am Acad Nurse Pract 14:347–353CrossRefGoogle Scholar
  60. Ravera S, Bianco B, Cugnoli C, Panfoli I, Calzia D, Morelli A, Pepe IM (2010) Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31:270–276CrossRefGoogle Scholar
  61. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707–718CrossRefGoogle Scholar
  62. Ritz T, Dommer DH, Phillips JB (2002) Shedding light on vertebrate magnetoreception. Neuron 34:503–506CrossRefGoogle Scholar
  63. Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W (2010) Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 7:S135–S146CrossRefGoogle Scholar
  64. Rosen AD (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am J Physiol 262:C1418–1422Google Scholar
  65. Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155CrossRefGoogle Scholar
  66. Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173CrossRefGoogle Scholar
  67. Saunders R (2005) Static magnetic fields: animal studies. Prog Biophys Mol Biol 87:225–239CrossRefGoogle Scholar
  68. Sirmatel O, Sert C, Tümer C, Oztürk A, Bilgin M, Ziylan Z (2007) Change of nitric oxide concentration in men exposed to a 1.5 T constant magnetic field. Bioelectromagnetics 28:152–154CrossRefGoogle Scholar
  69. Steyn PF, Ramey DW, Kirschvink J, Uhrig J (2000) Effect of a static magnetic field on blood flow to the metacarpus in horses. J Am Vet Med Assoc 217:874–877CrossRefGoogle Scholar
  70. Strelczyk D, Eichhorn ME, Luedemann S, Brix G, Dellian M, Berghaus A, Strieth S (2009) Static magnetic fields impair angiogenesis and growth of solid tumors in vivo. Cancer Biol Ther 8:1756–1762CrossRefGoogle Scholar
  71. Strieth S, Strelczyk D, Eichhorn ME, Dellian M, Luedemann S, Griebel J, Bellemann M, Berghaus A, Brix G (2008) Static magnetic fields induce blood flow decrease and platelet adherence in tumor microvessels. Cancer Biol Ther 7:814–819CrossRefGoogle Scholar
  72. Suzuki H, Swei A, Zweifach BW, Schmid-Schönbein GW (1995) In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 25:1083–1089Google Scholar
  73. Takeshige C, Sato M (1996) Comparisons of pain relief mechanisms between needling to the muscle, static magnetic field, external qigong and needling to the acupuncture point. Acupunct Electrother Res 21:119–131Google Scholar
  74. Welch WJ, Tojo A, Lee JU, Kang DG, Schnackenberg CG, Wilcox CS (1999) Nitric oxide synthase in the JGA of the SHR: expression and role in tubuloglomerular feedback. Am J Physiol 277:F130–F138Google Scholar
  75. Winklhofer M (2010) Magnetoreception. J R Soc Interface 7:S131–S134CrossRefGoogle Scholar
  76. Xu S, Okano H, Ohkubo C (1998) Subchronic effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 12:383–389Google Scholar
  77. Xu S, Okano H, Ohkubo C (2000) Acute effects of whole-body exposure to static magnetic fields and 50-Hz electromagnetic fields on muscle microcirculation in anesthetized mice. Bioelectrochemistry 53:127–135CrossRefGoogle Scholar
  78. Ye SR, Yang JW, Chen CM (2004) Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int J Radiat Biol 80:699–708CrossRefGoogle Scholar
  79. Zhadin MN (2001) Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 22:27–45CrossRefGoogle Scholar
  80. Zhao W, Swanson SA, Ye J, Li X, Shelton JM, Zhang W, Thomas GD (2006) Reactive oxygen species impair sympathetic vasoregulation in skeletal muscle in angiotensin II-dependent hypertension. Hypertension 48:637–643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Japan EMF Information CenterTokyoJapan
  2. 2.Meiji Pharmaceutical UniversityTokyoJapan
  3. 3.Research Center for Frontier Medical EngineeringChiba UniversityChibaJapan
  4. 4.Product Development Division, R&D Section, PIP Co., Ltd.OsakaJapan

Personalised recommendations