The Environmentalist

, Volume 30, Issue 1, pp 18–23 | Cite as

Leaf surface structure alterations due to particulate pollution in some common plants

  • A. Rai
  • K. Kulshreshtha
  • P. K. Srivastava
  • C. S. Mohanty


The plant foliar surface is the most important receptor of atmospheric pollutants. It undergoes several structural and functional changes when particulate-laden air strikes it. In the present investigation, ten annual plant species viz., Abelmoschus esculentus, Celosia cristata, Coleus blumei, Cyamopsis tetragonolobus, Gomphrena globosa, Impatiens balsamina, Ocimum sanctum, Phaseolus vulgaris, Solanum melongena, and Zinnia elegans were studied for their growth parameters and leaf morphological features. They were subjected to dust experimentally for 60 days. The micro-morphological traits like wax, cuticle, epidermis, stomata, and trichomes were observed under light and scanning electron microscopes. Remarkable differences in the growth parameters and micro-morphological features were recorded in the dust-treated plants when compared to the respective controls. The reduction in growth parameters, the size of epidermal cells, and stomata were reduced and cuticle damage was also observed. The relative proportion of fine particles, which play a major role in hampering the overall growth of a plant, was higher in comparison to ultra-fine and coarse particles.


Particulate Morphological features Plant foliage Ultra fine Coarse particles Ultra-structure Urban dust 



We thank the director of the National Botanical Research Institute, Lucknow, India for providing the necessary facilities.


  1. Bender MH, Baskin JM, Baskin CC (2002) Flowering requirements of Polymnia canadensis (Asteraceae) and their influence on its life history variation. Plant Ecol 160:113–124. doi: 10.1023/A:1015891702432 CrossRefGoogle Scholar
  2. Bystrom BG, Glater RB, Scott FM, Bowler ESC (1968) Leaf surface of Beta vulgaris—electron microscope study. Bot Gaz 129:133–198. doi: 10.1086/336425 CrossRefGoogle Scholar
  3. Ernst WHO (1982) Monitoring of particulate pollutants. In: Stebbing L, Jager HJ (eds) Monitoring of air pollutants by plants. Junk Publishers, The Hague, The Netherlands, pp 121–128Google Scholar
  4. Farmer AM (1993) The effects of dust on vegetation—a review. Environ Pollut 79(1):63–75. doi: 10.1016/0269-7491(93)90179-R CrossRefGoogle Scholar
  5. Farooqui A, Kulshreshtha K, Srivastava K, Singh SN, Farooqui SA, Pandey V, Ahmad KJ (1995) Photosynthesis, stomatal response and metal accumulation in Cineraria maritima Linn. and Centauria moschata Linn. grown in metal rich soil. Sci Total Environ 164:203–207. doi: 10.1016/0048-9697(95)04471-C CrossRefGoogle Scholar
  6. Freer-Smith PH, Hollway S, Goodman A (1997) The uptake of particulates by an urban woodland: site description and particulate composition. Environ Pollut 95(1):27–35. doi: 10.1016/S0269-7491(96)00119-4 CrossRefGoogle Scholar
  7. Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29:213–239. doi: 10.1016/S0160-4120(02)00181-2 CrossRefGoogle Scholar
  8. Hirano T, Kiyota M, Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut 89:255–261. doi: 10.1016/0269-7491(94)00075-O CrossRefGoogle Scholar
  9. Hollenbach B, Schreiber L, Hartung W, Dietz KJ (1997) Cadmium leads to stimulated expression of the liquid transfer protein genes in barley: implications of the involvement of lipid transfer proteins in wax assembly. Planta 203:9–19. doi: 10.1007/s004250050159 CrossRefGoogle Scholar
  10. Indhirabai K, Dhanalakshmi S, Lakshmanan KK (1989) Environmental pollution and vegetative growth in Vigna unguiculata Var. CO-4. Geobios 16(5):189–196Google Scholar
  11. Kosiba P (2008) Variability of morphometric leaf traits in small-leaved linden (Tilia cordata Mill.) under the influence of air pollution. Acta Soc Bot Pol 77(2):125–137Google Scholar
  12. Kulshreshtha K, Yunus M, Dwivedi AK, Ahmad KJ (1980) Effect of air pollution on the epidermal traits of Jasminum sambac Ait. N Bot. 7:193–197Google Scholar
  13. Lohr VI, Pearson-Mims CH (1996) Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants. Atmos Environ 30:2565–2568. doi: 10.1016/1352-2310(95)00465-3 CrossRefGoogle Scholar
  14. Lorenzini G, Grassi C, Nali C, Petiti A, Loppi S, Tognotti L (2006) Leaves of Pittosporum tobira as indicators of airborne trace element and PM10 distribution in central Italy. Atmos Environ 40:4025–4036. doi: 10.1016/j.atmosenv.2006.03.032 CrossRefGoogle Scholar
  15. Mankovska B, Godzik B, Badea O, Shparyk Y, Moravcik P (2004) Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environ Pollut 130:41–54. doi: 10.1016/j.envpol.2003.10.020 CrossRefGoogle Scholar
  16. Meusel I, Neinhuis C, Markstadter C, Barthlott W (1999) Ultra structure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Can J Bot 77:706–720. doi: 10.1139/cjb-77-5-706 CrossRefGoogle Scholar
  17. Monn C, Braendli O, Schaeppi G, Schindler C, Ackermann-Liebrich U, Leuenberger P (1995) Particulate matter <10 μm (PM10) and total suspended particulates (TSP) in urban, rural and alpine air in Switzerland. Atmos Environ 29:2565–2573. doi: 10.1016/1352-2310(95)94999-U CrossRefGoogle Scholar
  18. Naidoo G, Chirkoot D (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marine in Richards Bay, South Africa. Environ Pollut 127:359–366. doi: 10.1016/j.envpol.2003.08.018 CrossRefGoogle Scholar
  19. Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak and ginkgo in relation to leaf micro morphology and wettability. New Phytol 138:91–98. doi: 10.1046/j.1469-8137.1998.00882.x CrossRefGoogle Scholar
  20. Pal A, Kulshreshtha K, Ahmad KJ, Behl HM (2002) Do leaf surface characters play a role in plant resistance to auto exhaust pollution. Flora 197:47–55Google Scholar
  21. Prasad MSV, Subramanian RB, Inamdar JA (1991) Effect of cement kiln dust on Cajanus cajan (L.) Millsp. Indian J Environ Health 33:11–21Google Scholar
  22. QUARG-Quality of Urban Air Review Group (1996) Airborne particulate matter in the United Kingdom: third report of the quality of urban air review group. Department of Environment, London, UKGoogle Scholar
  23. Saneoka H, Ogata S (1987) Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions. Soil Sci Plant Nutr 33:439–448Google Scholar
  24. Sauter JJ, Pambor L (1989) The dramatic corrosive effect of roadside exposure and of aromatic hydrocarbons on the epistomatal wax crystalloids in spruce and fir and its significance for the ‘Waldsterben’. Eur J Forest Pathol 19:370–378. doi: 10.1111/j.1439-0329.1989.tb00272.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Rai
    • 1
  • K. Kulshreshtha
    • 1
  • P. K. Srivastava
    • 1
  • C. S. Mohanty
    • 1
  1. 1.Eco-Education DivisionNational Botanical Research InstituteLucknowIndia

Personalised recommendations