The Environmentalist

, 29:37 | Cite as

Biological responses in edible crab, Callinectes amnicola that could serve as markers of heavy metals pollution

  • Adebayo A. Otitoloju
  • Olugbenga K. Elegba
  • Adesola O. Osibona


Responses of lagoon crab, Callinectes amnicola were explored as useful biological markers of heavy metal pollution. The toxicity level of the metals based on the 96-h LC50 values showed that copper with LC50 value of 0.018 mM was found to be two times more toxic than Lead (0.041 mM) against the lagoon crab, C. amnicola. The exposure of the lagoon crab to sublethal concentrations (1/100th and 1/10th of 96-h LC50 values) of Cu and Pb compound, respectively, resulted in the bioaccumulation of the test metals to varying degrees in the selected organs that were dependent on the type of metal and concentration of metal compound in the test media. The degree of metal (Cu and Pb) accumulation was generally in the following order: gills > muscle > heptopancrease. Exposure of the crabs to sublethal concentrations of the metals also caused pathological changes such as the disruption of the gill filaments and degeneration of glandular cells with multifocal areas of calcification in the hepatopancreas. A reduction in the weight of the exposed animals over a 14-day period of observation was also recorded. The significance of these results and the usefulness of the biological endpoints in monitoring programmes aimed at establishing the total environmental level of heavy metals in aquatic ecosystems were discussed.


Heavy metals Biomarkers Histopathology Bioaccumulation Biomonitoring 



The authors are grateful to Dr. J.K. Saliu for his useful suggestions in the preparation of the manuscript.


  1. Bamber SD, Depledge MH (1997) Responses of shore crabs to physiological changes following exposure to selected environmental contaminants. Aquat Toxicol 40:79–92. doi: 10.1016/S0166-445X(97)00040-4 CrossRefGoogle Scholar
  2. Baron MG (1995) Bioaccumulation and bioconcentration in aquatic organisms. In: Hoffman GA, Rattner BA Jr, Ciaras GA Jr (eds) Handbook of ecotoxicology. CRC press Inc. Lewis Publishers, London, pp 652–662Google Scholar
  3. Brown RJ, Galloway TS, Lowe D, Browne MA, Dissanayake A, Jones MB et al (2004) Differential sensitivity of three marine invertebrates to copper assessed using multiple biomarkers. Aquat Toxicol 66:267–278. doi: 10.1016/j.aquatox.2003.10.001 CrossRefGoogle Scholar
  4. Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76(2):89–131. doi: 10.1016/0269-7491(92)90099-V CrossRefGoogle Scholar
  5. Chukwu LO (1991) Studies on heavy metal contamination of water sediments and decapod crustaceans from River sasa. PhD Thesis, University of Lagos, 164 ppGoogle Scholar
  6. Clark RB (1992) Marine pollution, 3rd edn. Oxford University Press, Oxford, p 169Google Scholar
  7. Curtis TM, Williamson R, Depledge MH (2000) Simultaneous monitoring of valve and cardiac activity in the blue mussel Mytilus edulis exposed to copper. Mar Biol (Berl) 136:837–846. doi: 10.1007/s002270000297 CrossRefGoogle Scholar
  8. Don-Pedro KN (1989) Mode of action fixed oils against eggs of Callosobrochus maculatus (f). Pestic Sci 26:107–115. doi: 10.1002/ps.2780260202 CrossRefGoogle Scholar
  9. FAO/SIDA (1986) Manual of methods in aquatic environmental research, Part 9. Analyses of metal and organochlorines in fish. FAO Fish Tech Pap 212:21–33Google Scholar
  10. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, LondonGoogle Scholar
  11. Harada M, Smith AM (1975) Minamata disease: a medical report. In: Smith WE, Smith AM (eds) Minamata: a warning to the world. Chatto and Windus, London, pp 180–192Google Scholar
  12. Kakkar P, Jaffery F (2005) Biological markers for metal toxicity. Environ Toxicol Pharmarcol 19:335–349CrossRefGoogle Scholar
  13. Kurdland L (1960) Minamata disease. World Neurol 1:370–385Google Scholar
  14. Langston WJ, Zhou M (1987) Cadmium accumulation, distribution and metabolism and in gastropod Littorina littorea: the role of metal-binding protein. J Mar Biol Assoc UK 67:585–601CrossRefGoogle Scholar
  15. Lin CH, Chen JC (2001) Haemolymph oxyhaemocyanin and protein levels and acid-base balance in the tiger shrimps Penaeus monodon exposed to copper sulfate. J World Aquacult Soc 32:335–341. doi: 10.1111/j.1749-7345.2001.tb00457.x CrossRefGoogle Scholar
  16. Matthiessen P, Thain JE, Law RJ, Fileman TW (1993) Attempts to assess the environmental hazard posed by complex mixtures of organic chemicals in UK estuaries. Mar Pollut Bull 26:90–95. doi: 10.1016/0025-326X(93)90097-4 CrossRefGoogle Scholar
  17. Otitoloju AA (2002) Evaluation of the joint action toxicity of binary mixtures of heavy metals against the mangrove periwinkle of Tympanotonous fuscatus var radula (L). Ecotoxicol Environ Saf 53:404–415. doi: 10.1016/S0147-6513(02)00032-5 CrossRefGoogle Scholar
  18. Otitoloju AA, Don-Pedro KN (2002) Bioaccumulation of heavy metals (Zn, Pb, Cu and Cd) by Tympanotonous fuscatus var radula (L) exposed to sublethal concentrations in laboratory bioassays. W Afr J Appl Ecol 3:17–29Google Scholar
  19. Otitoloju AA, Don-Pedro KN (2004) Integrated laboratory and field assessments of heavy metals accumulation in edible periwinkle, Tympanotonus fuscatus var radula (L.). Ecotoxicol Environ Saf 57:354–362. doi: 10.1016/j.ecoenv.2003.09.002 CrossRefGoogle Scholar
  20. Otitoloju AA, Don-Pedro KN (2006) Influence of joint application of heavy metals on level of each metal accumulated in the periwinkle Tympanotonus fuscatus Gastropoda: Potamididae. Int J Trop Biol 54(3):803–814Google Scholar
  21. Otitoloju AA, Don-Pedro KN, Oyewo EO (2007) Assessment of potential ecological disruption based on heavy metal toxicity, accumulation and distribution in media of the Lagos lagoon. Afr J Ecol 45:454–463. doi: 10.1111/j.1365-2028.2007.00754.x CrossRefGoogle Scholar
  22. Oyewo EO (1998) Industrial sources and distribution of heavy metals in Lagos lagoon and their biological effects on estuarine animals, PhD Thesis, University of Lagos, 274 ppGoogle Scholar
  23. Radhakrishnaiah K (1988) Accumulation of copper in the organs of freshwater fish, Labeo rohita (Hamilton), on esposure to lethal and sublethal concentration of copper. J Environ Biol 9(3)(Suppl):319–326Google Scholar
  24. Stentiford GD, Feist SW (2005) A histopathological survey of shore crab (Carcinus maenas) and brown shrimp (Crangon crangon) from six estuaries in the United Kingdom. J Invertebr Pathol 88:136–146. doi: 10.1016/j.jip. 2005.01.006 CrossRefGoogle Scholar
  25. Stentiford GD, Longshaw M, Lyons BP, Jones G, Green M, Feist SW (2003) Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Mar Environ Res 55:137–159. doi: 10.1016/S0141-1136(02)00212-X CrossRefGoogle Scholar
  26. Svendsen C, Week JM (1997) Relevance and applicability of a simple earthworm.biomarker of copper exposure. 1. Links of ecological effects in a laboratory study with Eisenia andrei. Ecotoxicol Environ Saf 36:72–79. doi: 10.1006/eesa.1996.1491 CrossRefGoogle Scholar
  27. Varanasi U, Stein JE, Nishimoto M, Reichert WL, Collier TK (1987) Chemical carcinogenesis in feral fish: uptake, activation and detoxication of organic xenobiotics. Environ Health Perspect 71:155–170. doi: 10.2307/3430423 CrossRefGoogle Scholar
  28. Vethaak AD, Jol JG (1996) Diseases of flounder Platichthys flesus in Dutch coastal and estuarine waters, with particular reference to environmental stress factors II Epizootiology of gross lesions. Dis Aquat Org 26:81–97. doi: 10.3354/dao026081 CrossRefGoogle Scholar
  29. Viarengo A, Burlando B, Giordana A, Bolobnesi C, Gabroelides GP (2000) Networking and expert system analysis: next frontier in biomonitoring. Mar Environ Res 49:483–486. doi: 10.1016/S0141-1136(00)00027-1 CrossRefGoogle Scholar
  30. Weeks JM, Jensen FB, Depledge MH (1993) Acid-base status, haemolymph composition and tissue copper accumulation in the shore crab Cacinus maenas exposed to copper and salinity stress. Mar Ecol Prog Ser 97:91–98. doi: 10.3354/meps097091 CrossRefGoogle Scholar
  31. World Health Organisation (1995) Human exposure to lead, World Health Organization GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adebayo A. Otitoloju
    • 1
  • Olugbenga K. Elegba
    • 1
  • Adesola O. Osibona
    • 2
  1. 1.Department of Zoology, Ecotoxicology LaboratoryUniversity of LagosLagosNigeria
  2. 2.Department of Marine SciencesUniversity of LagosLagosNigeria

Personalised recommendations