Skip to main content
Log in

Enrichment of vermicomposts prepared from cow dung spiked solid textile mill sludge using nitrogen fixing and phosphate solubilizing bacteria

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

Textile mill waste can be vermicomposted if it is mixed in the range of 20–30% with cow dung. This article reports the effect of inoculation, of nitrogen fixing Azotobacter chroococcum strain; Azospirillum brasilense strain and phosphate solubilizing Pseudomonas maltophila, on nitrogen and phosphorus content of vermicomposts prepared from cow dung (CD) and cow dung spiked textile mill sludge (CD + STMS). The CD vermicompost was more supportive to the growth and multiplication of all the three bacteria than CD + STMS vermicompost. In Azotobacter chroococcum treated vermicomposts maximum nitrogen content was recorded between 45 and 60 days [CD␣vermicompost (25.9 ± 0.45 g kg−1) and CD + STMS vermicompost (20.6 ± 0.62 g kg−1)] followed by Azospirillum brasilense inoculation [CD vermicompost (19.4 ± 0.60 g kg−1) and CD + STMS vermicompost (18.6 ± 0.17 g kg−1)]. Phosphorus content in Pseudomonas maltophila inoculated CD vermicompost was 20.8 ± 0.20 g kg−1 and CD + STMS vermicompost was 13.4 ± 0.45 g kg−1 after 75th day of inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Butt, K. R. (1993). Utilization of solid paper mill sludge and spent brewery yeast as a feed for soil-dwelling earthworms. Bioresource Technology, 44, 105–107.

    Article  CAS  Google Scholar 

  • Edwards, C. A., & Lofty, J. R. (1977). Biology of earthworms (2nd ed., Vol. 9, p. 333). London: Chapman and Hall.

  • Elvira, C., Goicoechea, M., Sampdro, L., Mato, S., & Nogales, R. (1996). Bioconversion of solid paper-pulp mill sludge by earthworms. Bioresource Technology, 75, 173–177.

    Article  Google Scholar 

  • Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot scale study. Bioresource Technology, 63, 205–211.

    Article  CAS  Google Scholar 

  • Garg, V. K., & Kaushik, P. (2005). Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresource Technology, 96, 1189–1193.

    Article  Google Scholar 

  • Jensen, V. (1951). Notes on the biology of Azotobacter. Proceedings of the Society for Applied Bacteriology, 74, 93–98.

    Google Scholar 

  • Kale, R. (1991). Vermiculture: Scope for new biotechnology. Calcutta: Zoological Survey of India.

    Google Scholar 

  • Kale, R. D., Mallesh, Bano, K., & Bagyaraj, D. J. (1992). Influence of vermicompost application on the available macro nutrients and selected microbial population in a paddy field. Soil Biology and Biochemistry, 24, 1317-1320.

    Article  Google Scholar 

  • Kaushik, P., Garg, V. K. (2003). Vermicomposting of mixed solid textile mill sludge and cow dung with epigeic earthworm Eisenia foetida. Bioresource Technology, 90, 311–316.

    Article  CAS  Google Scholar 

  • Kaushik, P., & Garg, V. K. (2004). Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresource Technoogy., 94, 203–209.

    Article  CAS  Google Scholar 

  • Okon, Y., Albrecht, S. L., & Buriss, R. H. (1977). Methods for growing Sprillum lipoferum and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology, 33, 85–88.

    Google Scholar 

  • Parle, J. N. (1963). A microbiological study of earthworm cast. Journal of General Microbiology, 31, 13–22.

    CAS  Google Scholar 

  • Pikovskaya, R. E. (1948). Mobilisation of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia, 17, 362–370.

    CAS  Google Scholar 

  • Premono, E.-M., Moawad, M. A., & Vlek, P. L.G. (1999). Effect of␣phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian Journal of Crop Science, 11, 13–23.

    Google Scholar 

  • Satchell, J. E., & Martin, K. (1984). Phosphate activity in earthworm faeces. Soil Biology and Biochemistry, 16, 191–194.

    Article  CAS  Google Scholar 

  • Sherman-Huntoon, R. (2000). Latest developments in mid-to-large-scale vermicomposting. Biocycle, 41(11), 51–54.

    Google Scholar 

  • Sinha, R. K., Heart, S., Agarwal, S., Asadi, R., & Carretero, E. (2002). Vermiculture and waste management: study of action of earthworms Eisenia foetida, Eudrilus euginae and Parionyx excavatus on biodegradation of some community wastes in India and Australia. The Environmentalist, 22, 261–268.

    Article  Google Scholar 

  • Suthar, S. (2006). Potential utilization of guar gum industrial waste in␣vermicompost production. Bioresource Technology, 97, 2474–2477.

    CAS  Google Scholar 

  • Tiwari, S. C., & Mishra, R. R. (1993). Fungal abundance and diversity in earthworm cast and in uningested soil. Biology and Fertility of Soils, 16, 131–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushik, P., Yadav, Y.K., Dilbaghi, N. et al. Enrichment of vermicomposts prepared from cow dung spiked solid textile mill sludge using nitrogen fixing and phosphate solubilizing bacteria. Environmentalist 28, 283–287 (2008). https://doi.org/10.1007/s10669-007-9141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9141-5

Keywords

Navigation