The Environmentalist

, Volume 28, Issue 3, pp 283–287 | Cite as

Enrichment of vermicomposts prepared from cow dung spiked solid textile mill sludge using nitrogen fixing and phosphate solubilizing bacteria

  • Priya Kaushik
  • Y. K. Yadav
  • Neeraj Dilbaghi
  • Vinod K. Garg


Textile mill waste can be vermicomposted if it is mixed in the range of 20–30% with cow dung. This article reports the effect of inoculation, of nitrogen fixing Azotobacter chroococcum strain; Azospirillum brasilense strain and phosphate solubilizing Pseudomonas maltophila, on nitrogen and phosphorus content of vermicomposts prepared from cow dung (CD) and cow dung spiked textile mill sludge (CD + STMS). The CD vermicompost was more supportive to the growth and multiplication of all the three bacteria than CD + STMS vermicompost. In Azotobacter chroococcum treated vermicomposts maximum nitrogen content was recorded between 45 and 60 days [CD␣vermicompost (25.9 ± 0.45 g kg−1) and CD + STMS vermicompost (20.6 ± 0.62 g kg−1)] followed by Azospirillum brasilense inoculation [CD vermicompost (19.4 ± 0.60 g kg−1) and CD + STMS vermicompost (18.6 ± 0.17 g kg−1)]. Phosphorus content in Pseudomonas maltophila inoculated CD vermicompost was 20.8 ± 0.20 g kg−1 and CD + STMS vermicompost was 13.4 ± 0.45 g kg−1 after 75th day of inoculation.


Cow dung Solid textile mill sludge Vermicompost Nitrogen Phosphorus Enrichment Bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Butt, K. R. (1993). Utilization of solid paper mill sludge and spent brewery yeast as a feed for soil-dwelling earthworms. Bioresource Technology, 44, 105–107.CrossRefGoogle Scholar
  2. Edwards, C. A., & Lofty, J. R. (1977). Biology of earthworms (2nd ed., Vol. 9, p. 333). London: Chapman and Hall.Google Scholar
  3. Elvira, C., Goicoechea, M., Sampdro, L., Mato, S., & Nogales, R. (1996). Bioconversion of solid paper-pulp mill sludge by earthworms. Bioresource Technology, 75, 173–177.CrossRefGoogle Scholar
  4. Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot scale study. Bioresource Technology, 63, 205–211.CrossRefGoogle Scholar
  5. Garg, V. K., & Kaushik, P. (2005). Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresource Technology, 96, 1189–1193.CrossRefGoogle Scholar
  6. Jensen, V. (1951). Notes on the biology of Azotobacter. Proceedings of the Society for Applied Bacteriology, 74, 93–98.Google Scholar
  7. Kale, R. (1991). Vermiculture: Scope for new biotechnology. Calcutta: Zoological Survey of India.Google Scholar
  8. Kale, R. D., Mallesh, Bano, K., & Bagyaraj, D. J. (1992). Influence of vermicompost application on the available macro nutrients and selected microbial population in a paddy field. Soil Biology and Biochemistry, 24, 1317-1320.CrossRefGoogle Scholar
  9. Kaushik, P., Garg, V. K. (2003). Vermicomposting of mixed solid textile mill sludge and cow dung with epigeic earthworm Eisenia foetida. Bioresource Technology, 90, 311–316.CrossRefGoogle Scholar
  10. Kaushik, P., & Garg, V. K. (2004). Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresource Technoogy., 94, 203–209.CrossRefGoogle Scholar
  11. Okon, Y., Albrecht, S. L., & Buriss, R. H. (1977). Methods for growing Sprillum lipoferum and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology, 33, 85–88.Google Scholar
  12. Parle, J. N. (1963). A microbiological study of earthworm cast. Journal of General Microbiology, 31, 13–22.Google Scholar
  13. Pikovskaya, R. E. (1948). Mobilisation of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia, 17, 362–370.Google Scholar
  14. Premono, E.-M., Moawad, M. A., & Vlek, P. L.G. (1999). Effect of␣phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian Journal of Crop Science, 11, 13–23.Google Scholar
  15. Satchell, J. E., & Martin, K. (1984). Phosphate activity in earthworm faeces. Soil Biology and Biochemistry, 16, 191–194.CrossRefGoogle Scholar
  16. Sherman-Huntoon, R. (2000). Latest developments in mid-to-large-scale vermicomposting. Biocycle, 41(11), 51–54.Google Scholar
  17. Sinha, R. K., Heart, S., Agarwal, S., Asadi, R., & Carretero, E. (2002). Vermiculture and waste management: study of action of earthworms Eisenia foetida, Eudrilus euginae and Parionyx excavatus on biodegradation of some community wastes in India and Australia. The Environmentalist, 22, 261–268.CrossRefGoogle Scholar
  18. Suthar, S. (2006). Potential utilization of guar gum industrial waste in␣vermicompost production. Bioresource Technology, 97, 2474–2477.Google Scholar
  19. Tiwari, S. C., & Mishra, R. R. (1993). Fungal abundance and diversity in earthworm cast and in uningested soil. Biology and Fertility of Soils, 16, 131–134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Priya Kaushik
    • 1
  • Y. K. Yadav
    • 1
  • Neeraj Dilbaghi
    • 1
  • Vinod K. Garg
    • 1
  1. 1.Department of Environmental Science and EngineeringGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations