Advertisement

The Environmentalist

, Volume 27, Issue 4, pp 465–475 | Cite as

Pulsed electromagnetic field therapy history, state of the art and future

  • Marko S. Markov
Article

Abstract

Magnetic and electromagnetic fields are now recognized by the 21st century medicine as real physical entities that promise the healing of various health problems, even when conventional medicine has failed. Today magnetotherapy provides a non-invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of diseases and pathologies. Millions of people worldwide have received help in treatment of musculoskeletal system, as well as pain relief. Pulsed electromagnetic fields are one important modality in magnetotherapy and recent technological innovations, such as Curatron pulsed electromagnetic field devices, offer excellent, state of the art computer controlled therapy system. In this article the development, state of the art and future of pulsed electromagnetic field therapy are discussed.

Keywords

Thermal Noise Chronic Wound Ankle Sprain Myosin Light Chain Phosphorylation Pulse Radiofrequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The author express his deep gratitude to Dr. A.R. Liboff for his kind permission to use figures from his excellent article published in “Bioelectromagnetic Medicine”

References

  1. Adey, W. R. (1986). The sequence and energetics of cell membrane transducing coupling to intracellular enzyme systems. Bioelectrochem Bioenergetics, 15, 447–456.CrossRefGoogle Scholar
  2. Adey, W. R. (2004). Potential therapeutic application of nonthermal electromagnetic fields: Ensemble organization of cells in tissue as a factor in biological tissue sensing. In P. J. Rosch, & M. S. Markov (Eds.), Bioelectromagnetic medicine (pp. 1–15). New York: Marcel Dekker.Google Scholar
  3. Bassett, C. A. L., Pawluk, R. J., & Pilla, A. A. (1974). Acceleration of fracture repair by electromagnetic fields. Annals of the New York Academy of Sciences, 238, 242–262.CrossRefGoogle Scholar
  4. Bassett, C. A. L., Pilla, A. A., & Pawluk, R. (1977). A non-surgical salvage of surgically-resistant pseudoarthroses and non-unions by pulsing electromagnetic fields. Clinical Orthopaedics, 124, 117–131.Google Scholar
  5. Bental, R. H. C. (1986). Low-level pulsed radiofrequency fields and the treatment of soft-tissue injuries. Bioelectrochem Bioenergetics, 16, 531–548.CrossRefGoogle Scholar
  6. Blackman, C. F., Blanchard, J. P., Benane, S. G., & House, D. E. (1995). The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. Federation of American Societies for Experimental Biology Journal, 9, 547–551.Google Scholar
  7. Blanchard, J. P., & Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics, 15, 217–238.CrossRefGoogle Scholar
  8. Bianco, B., & Chiabrera, A. (1992). From the Langevin-Lorentz to the Zeeman model of electromagnetic effects on ligand-receptor binding. Bioelectrochem Bioenergetics, 28, 355–365.CrossRefGoogle Scholar
  9. Canaday, D. J., & Lee, R. C. (1991) Scientific basis for clinical applications of electric fields in soft-tissue Repair. In C. T. Brighton, & S.R. Pollack (Eds.), Electromagnetics in Biology and Medicine (pp. 275–291). San Francisco Press Inc.Google Scholar
  10. Canedo-Dorantes, L., Garcia-Cantu, R., Barrera, R., Mendez- Ramirez, I., Navarro, V. H., & Serrano, G. (2002). Healing of chronic arterial and venous leg ulcers with systemic electromagnetic fields. Archives of Medical Research, 33, 281–289.CrossRefGoogle Scholar
  11. Comorosan, S., Vasilco, R., Arghiropol, M., Paslaru, L., Jieanu, V., & Stelea, S. (1993). The effect of Diapulse therapy on the healing of decubitus ulcer. Romanian Journal of Physiology, 30, 41–45.Google Scholar
  12. Edmonds, D. T. (1993). Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochemistry and Bioenergetics, 30, 3–12.CrossRefGoogle Scholar
  13. Engstrom, S. (1996). Dynamic properties of Lednev’s parametric resonance mechanism. Bioelectromagnetics, 17, 58–70.CrossRefGoogle Scholar
  14. Engstrom, S., Markov, M. S., McLean, M. J., Holcomb, R. R., & Markov, J. M. (2002). Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics, 23, 475–479.CrossRefGoogle Scholar
  15. Ericsson, A. D., Hazlewood, C. F., Markov, M. S., & Crawford, F. (2004). Specific Biochemical changes in circulating lymphocytes following acute ablation of symptoms in Reflex Sympathetic Dystrophy (RSD): A pilot study. In P. Kostarakis (Ed.), Proceedings of 3rd international workshop on biological effects of EMF (pp. 683–688). Kos, Greece, October 4–8, 2004, ISBN 960-233-151-8.Google Scholar
  16. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., & Baylink, D. J. (1994). Combined magnetic fields increase net calcium flux in bone cells. Calcified Tissue International, 55, 376–380.CrossRefGoogle Scholar
  17. Foley-Nolan, D., Barry, C., Coughlan, R. J., O’Connor, P., Roden, D. (1990) Pulsed high frequency (27 MHz) Electromagnetic therapy for persistent neck pain: a double blind placebo-controlled study of 20 patients. Orthopedics, 13, 445–451.Google Scholar
  18. Gardner, S. E., Frantz, R. A., & Schmidt, F. L. (1999). Effect of electrical stimulation on chronic wound healing: A meta-analysis. Wound Repair and Regeneration, 7, 495–503.CrossRefGoogle Scholar
  19. Ginsburg, A. J. (1934). Ultrashort radio waves as a therapeutic agent. Medical Record, 19, 1–8.Google Scholar
  20. Hazlewood, C. F., & Markov, M. S. (2006). Magnetic fields for relief of myofascial and/or low back pain through trigger points. In P. Kostarakis (Ed.), Proceedings of Forth International Workshop Biological effects of electromagnetic fields (pp. 475–483). Crete 16–20 October 2006, ISBN# 960-233-172-0.Google Scholar
  21. Ieran, M., Zaffuto, S., Bagnacani, M., Annovi, M., Moratti, A., & Cadossi, R. (1990). Effect of low frequency electromagnetic fields on skin ulcers of venous origin in humans: a double blind study. Journal of Orthopaedic Research, 8, 276–282.CrossRefGoogle Scholar
  22. Itoh, M., Montemayor, J. S., Jr., Matsumoto, E., Eason, A., Lee, M. H., & Folk, F. S. (1991). Accelerated wound healing of pressure ulcers by pulsed high peak power electromagnetic energy (Diapulse). Decubitus, 4, 24–25, 29–34.Google Scholar
  23. Kotnik, T., & Miklavcic, D. (2006). Theoretical analysis of voltage inducement on organic molecules. In P. Kostarakis (Ed.), Proceedings of forth international workshop biological effects of electromagnetic fields (pp. 217–226). Crete 16–20 October 2006, ISBN# 960-233-172-0.Google Scholar
  24. Lee, R. C., Canaday, D. J., & Doong, H. (1993). A review of the biophysical basis for the clinical application of electric fields in soft-tissue repair. The Journal of Burn Care and Rehabilitation, 14, 319–335.CrossRefGoogle Scholar
  25. Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics, 12, 71–75.CrossRefGoogle Scholar
  26. Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In A. Chiabrera, C. Nicolini, & H. P. Schwan (Eds.), Interactions between in interactions between electromagnetic fields and cells (pp. 281–396). New York: Plenum Press.Google Scholar
  27. Liboff, A. F., Fozek, R. J., Sherman, M. L., McLeod B. R., & Smith, S. D. (1987). Ca2+-45 cyclotron resonance in human lymphocytes. Journal of Bioelectricity, 6, 13–22.Google Scholar
  28. Liboff, A. R., Cherng, S., Jenrow, K. A., & Bull, A. (2003). Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 mT magnetostatic fields. Bioelectromagnetics, 24, 32–38.CrossRefGoogle Scholar
  29. Liboff, A. R. (2004). Signal shapes in electromagnetic therapies: A primer. In P. J. Rosch & M. S. Markov (Eds.), Bioelectromagnetic medicine (pp. 17–37). NY: Marcel Dekker.Google Scholar
  30. Liburdy, R. P., & Yost, M. G. (1993). Tme-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. In M. Blank (Ed.), Electricity and magnetism in biology and medicine (pp. 331–334). San Francisco Press.Google Scholar
  31. Markov, M. S., & Pilla, A. A. (1993). Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation. In M. Blank (Ed.), Electricity and magnetism in biology and medicine (pp. 323–327). San Francisco Press.Google Scholar
  32. Markov, M. S., Ryaby, J. T., Kaufman, J. J., & Pilla, A. A. (1992). Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation. In M. J. Allen, S. F. Cleary, A. E. Sowers, & D. D. Shillady (Eds.), Charge and field effects in biosystems-3 (pp. 225–230). Boston: Birkhauser.Google Scholar
  33. Markov, M. S., Wang, S., & Pilla, A. A. (1993). Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation. Bioelectrochem Bioenergetics, 30, 119–125.CrossRefGoogle Scholar
  34. Markov, M. S., Muehsam, D. J., & Pilla, A. A. (1994). Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields. In M. J. Allen, S. F. Cleary, & A. E. Sowers (Eds.), Charge and field effects in biosystems 4 (pp. 274–288). New Jersey: World Scientific.Google Scholar
  35. Markov, M. S., & Pilla, A. A. (1994a). Static magnetic field modulation of myosin phosphorylation: Calcium dependence in two enzyme preparations. Bioelectrochem Bioenergetics, 35, 57–61.CrossRefGoogle Scholar
  36. Markov, M. S., & Pilla, A. A. (1994b). Modulation of cell-free myosin light chain phosphorylation with weak low frequency and static magnetic fields. In A. Frey (Ed.), On the nature of electromagnetic field interactions with biological systems (pp. 127–141). R.G. Landes Co., Austin.Google Scholar
  37. Markov, M. S. (2002) How to go to magnetic field therapy? In P. Kostarakis (Ed.), Proceedings of second international workshop of biological effects of electromagnetic fields (pp. 7–11). Rhodes, Greece, October 2002, ISBN #960-86733-3-X. 5–15.Google Scholar
  38. Markov, M. S. (2004). Magnetic and electromagnetic field therapy: Basic principles of application for pain relief. In Rosch, P. J., & Markov, M. S. (Eds.), Bioelectromagnetic medicine (pp. 251–264). NY: Marcel Dekker.Google Scholar
  39. Markov, M. S. (2004a) Myosin light chain phosphorylation modification depending on magnetic fields I. Theoretical Electromagnetic Biology and Medicine, 23, 55–74.CrossRefGoogle Scholar
  40. Markov, M. S. (2004b). Myosin phosphorylation – a plausible tool for studying biological windows. Ross Adey Memorial Lecture. In P. Kostarakis (Ed.), Proceedings of third international workshop on biological effects of EMF (pp. 1–9). Kos, Greece, October 4–8, ISBN 960-233-151-8.Google Scholar
  41. Markov, M. S., Hazlewood, C. F., & Ericsson, A. D. (2004c). Systemic effect – a plausible explanation of the benefit of magnetic field therapy: A hypothesis. In P. Kostarakis (Ed.), Proceedings of 3rd international workshop on biological effects of EMF (pp. 673–682). Kos, Greece, October 4–8, 2004, ISBN 960-233-151-8.Google Scholar
  42. Markov M. S., Williams C. D., Cameron I. L, Hardman W. E., & Salvatore J. R. (2004d). Can magnetic field inhibit angiogenesis and tumor growth. In Rosch P. J., & Markov M. S. (Eds.), Bioelectromagnetic medicine (pp. 625–636). NY: Marcel Dekker.Google Scholar
  43. Markov, M. (2005). Biological windows: A tribute to Ross Adey. The Environmentalist, 25 (pp. 67–74).Google Scholar
  44. Mir, L. M. (2001). Therapeutic perspectives of in␣vivo cell electropermeabilization. Bioelectrochemistry, 53, 1–10.CrossRefGoogle Scholar
  45. Muehsam, D. J., & Pilla, A. A. (1994). Weak magnetic field modulation of ion dynamics in a potential well: Mechanistic and thermal noise considerations. Bioelectrochem Bioenergetics, 35, 71–79.CrossRefGoogle Scholar
  46. Muehsam, D. J., & Pilla, A. A. (1994). Weak magnetic field modulation of ion dynamics in a potential well: Mechanistic and thermal noise considerations. Bioelectrochem Bioenergetics, 35, 71–79.CrossRefGoogle Scholar
  47. Muehsam, D. S., & Pilla, A. A. (1996). Lorentz approach to static magnetic field effects on bound ion dynamics and binding kinetics: Thermal noise considerations. Bioelectromagnetics, 17, 89–99.CrossRefGoogle Scholar
  48. Nindl, G., Johnson, M. T., Hughes, E. F., & Markov, M. S. (2002). Therapeutic electromagnetic field effects on normal and activated Jurkat cells-International Workshop of Biological effects of Electromagnetic fields. Rhodes, Greece, 7–11 October 2002, (pp. 167–173). ISBN #960-86733-3-X.Google Scholar
  49. Ojingwa, J. C., & Isseroff, R. R. (2003). Electrical stimulation of wound healing. The Journal of Investigative Dermatology, 121, 1–12.CrossRefGoogle Scholar
  50. Pennington, G. M., Danley, D. L., Sumko, M. H., et al. (1993). Pulsed, non-thermal, high frequency electromagnetic energy (Diapulse) in the treatment of grade I and grade II ankle sprains. Military Medicine, 158, 101–104.Google Scholar
  51. Pilla, A. A. (1972). Electrochemical information and energy transfer in␣vivo. In Proc. 7th IECEC (pp. 761–764). Washington, D.C.: American Chemical Society.Google Scholar
  52. Pilla, A. A. (1974). Electrochemical information transfer at living cell membranes. Annals of the New York Academy of Sciences, 238, 149–170.CrossRefGoogle Scholar
  53. Pilla, A. A., Martin, D. E., Schuett, A. M., et al. (1996). Effect of pulsed radiofrequency therapy on edema from grades I and II ankle sprains: A placebo controlled, randomized, multi-site, double-blind clinical study. Journal of Athletic Training, S31, 53.Google Scholar
  54. Pilla, A. A., Muehsam, D. J., & Markov, M. S. (1997). A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion-binding and orientation of bound water molecules. Bioelectrochem Bioenergetics, 43, 239–249.CrossRefGoogle Scholar
  55. Pilla, A. A. (2006). Mechanisms and therapeutic applications of time-varying and static magnetic fields. In F. Barnes & B. Greenebaum (Eds.), Handbook of biological effects of electromagnetic fields (3rd ed.). Boca Raton, Fl: CRC Press.Google Scholar
  56. Rosch, P. J., & Markov, M. S. (2004). Bioelectromagnetic Medicine. NY: Marcel Dekker.Google Scholar
  57. Rushton, D. N. (2002). Electrical stimulation in the treatment of pain. Disability and Rehabilitation, 24, 407–415.CrossRefGoogle Scholar
  58. Ryaby, J. T. (1998). Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthopaedics, 355(suppl), 205–215.CrossRefGoogle Scholar
  59. Seaborne, D., Quirion-DeGirardi, C., & Rousseau, M. (1996). The treatment of pressure sores using pulsed electromagnetic energy (PEME). Physiotherapy Canada, 48, 131–137.Google Scholar
  60. Shuvalova, L. A., Ostrovskaya, M. V., Sosunov, E. A., & Lednev, V. V. (1991). Weak magnetic field influence of the speed of calmodulin dependent phosphorylation of myosin in solution. Dokladi Akademii Nauk USSR, 217, 227.Google Scholar
  61. Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J Pain, 4, 109–121.CrossRefGoogle Scholar
  62. Stiller, M. J., Pak, G. H., Pack, J. L., Thaler, S., Kenny, C., & Jondreau, L. (1992). A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: A double-blind, placebo- controlled clinical trial. The British Journal of Dermatology, 127, 147–154.CrossRefGoogle Scholar
  63. Todorov, N. (1982). Magnetotherapy (106 p). Sofia: Meditzina i Physcultura Publishing House.Google Scholar
  64. Vodovnik, L., & Karba, R. (1992). Treatment of chronic wounds by means of electric and electromagnetic fields. Medical & Biological Engineering & Computing, 30, 257–266.CrossRefGoogle Scholar
  65. Williams, C. D., Markov, M. S., Hardman, W. E., & Cameron, I. L. (2001). Therapeutic electromagnetic field effects on angiogenesis and tumor growth. Anticancer Research, 21, (pp. 3887–3892).Google Scholar
  66. Wysocki, A. B. (1996). Wound fluids and the pathogenesis of chronic wounds. J Wound Ostomy Care Nursing, 23, 283–290.Google Scholar
  67. Zhadin, M. N. (1998). Combined action of static and alternating magnetic fields on ion motion in a macromolecule: Theoretical aspects. Bioelectromagnetics, 19, 279–292.CrossRefGoogle Scholar
  68. Zhadin, M. N., & Fesenko, E. E. (1990). Ionic cyclotron resonance in biomolecules. Biomed Sci, 1, 245–250.Google Scholar
  69. Zizic, T., Hoffman, P., Holt, D., Hungerford, J., O’Dell, J., Jacobs, M, et al., (1995). The treatment of osteoarthritis of the knee with pulsed electrical stimulation. The Journal of Rheumatology, 22, 1757–1761.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Research InternationalWilliamsvilleUSA

Personalised recommendations