Skip to main content

Advertisement

Log in

Non-thermal effects of EMF upon the mammalian brain: the Lund experience

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

The environment in which biology exists has dramatically changed during the last decades. Life was formed during billions of years, exposed to, and shaped by the original physical forces such as gravitation, cosmic irradiation and the terrestrial magnetism. The existing organisms are created to function in harmony with these forces. However, in the late 19th century mankind introduced the use of electricity and during the very last decades, microwaves of the modern communication society spread around the world. Today one third of the world’s population is owner of the microwave-producing mobile phones. The question is: to what extent are living organisms affected by these ubiquitous radio frequency fields? Since 1988 our group has studied the effects upon the mammalian blood-brain barrier (BBB) by non-thermal radio frequency electromagnetic fields (RF-EMF). These have been revealed to cause significantly increased leakage of albumin through the BBB of exposed rats as compared to non-exposed animals—in a total series of about two thousand animals. One remarkable observation is the fact that the lowest energy levels give rise to the most pronounced albumin leakage. If mobile communication, even at extremely low energy levels, causes the users’ own albumin to leak out through the BBB, also other unwanted and toxic molecules in the blood, may leak into the brain tissue and concentrate in and damage the neurons and glial cells of the brain. In later studies we have shown that a 2-h exposure to GSM 915 MHz at non-thermal levels, gives rise to significant neuronal damage, seen 28 and 50 days after the exposure. In our continued research, the non-thermal effects (histology, memory functions) of long-term exposure for 13 months are studied as well as the effects of short term GSM 1,800 MHz upon gene expression. Most of our findings support that living organisms are affected by the non-thermal radio frequency fields. Studies from other laboratories in some cases find effects, while in other cases effects are not seen. Our conclusion is that all researchers involved in this field have the obligation to intensify this research in order to reduce, or avoid, the possible negative effects of the man made microwaves!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, E. N., & Kerns, J. M. (1981). Reversible microwave effects on the blood-brain barrier. Brain Research, 230, 153–164.

    Article  CAS  Google Scholar 

  • Bauréus Koch, C. L. M., Sommarin, M., Persson, B. R. R., Salford, L. G., & Eberhardt, J. L. (2003). Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics, 24, 395–402.

    Article  Google Scholar 

  • Belyaev, I. Y., Bauréus Koch, C., Terenius, O., Roxstrom-Lindquist, K., Malmgren, L. O. G., Sommer, W. H., Salford, L. G., & Persson, B. R. R. (2006). Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics, 27, 295–306.

    Article  CAS  Google Scholar 

  • Blanchard, J. P., & Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics, 15, 217–238.

    Article  CAS  Google Scholar 

  • De Pomerai, D. I., Smith, B., Dawe, A., North K., Smith, T., Archer, D. B., Duce, I. R., Jones, D., & Candido, E. P. (2003). Microwave radiation can alter protein conformation without bulk heating. FEBS Letters 543, 93–97.

    Article  CAS  Google Scholar 

  • Eberhardt, J. L., Persson, B. R. R., Brun, A. E., Malmgren, L. O., Grafström, G., & Salford, L. G. (2006). Long term effects of microwaes from GSM mobile phones on the rat brain. Abstract to the 4th International Workshop 16–20 Oct, Crete Greece.

  • Eberhardt, J. L., Persson, B. R. R., Malmgren, L. O., Brun, A. E., & Salford, L. G. (2007). Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Submitted for publication.

  • Eimerl, S., & Schramm, M. (1991). Acute glutamate toxicity and its potentiation by serum albumin are determined by the Ca2+ concentration. Neuroscience Letters, 130, 125–127.

    Article  CAS  Google Scholar 

  • Frank, R. N., Dutta S., & Mancini, M. A. (1987). Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Investigative Ophthalmology & Visual Science, 28, 1086–1091.

    CAS  Google Scholar 

  • Fredriksson, K., Kalimo, H., Nordborg, C., Johansson, B. B., & Olsson, Y. (1988). Nerve cell injury in the brain of stroke-prone spontaneously hypertensive rats. Acta Neuropathologica (Berl), 76, 227–237.

    Article  CAS  Google Scholar 

  • Fritze, K., Sommer, C., Schmitz, B., Mies, G., Hossmann, K.-A., Kiessling, M., & Wiessner, C. (1997). Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathologica, 94, 465–470.

    Article  CAS  Google Scholar 

  • Ghersi-Egea J. F., Minn A., Siest G. (1988). A new aspect of the protective functions of the blood-brain barrier: Activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sciences, 42, 2515–2523.

    Article  CAS  Google Scholar 

  • Hassel, B., Iversen, E. G., & Fonnum, F. (1994). Neurotoxicity of albumin in vivo. Neuroscience Letters, 167, 29–32.

    Article  CAS  Google Scholar 

  • Hyland, G. (2000). Physics and biology of mobile telephony. The Lancet, 356, 1833–1836.

    Article  CAS  Google Scholar 

  • ICNIRP. (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics, 74, 494–522.

    Google Scholar 

  • Ilhan, A., Gurel, A., Armutcu, F., Kamisili, S., Iraz, M., Akyol, O., & Ozen, S. (2004). Ginkgo biloba prevents mobile phoneinduced oxidative stress in rat brain. Clinica Chimica Acta, 340, 153–162.

    Article  CAS  Google Scholar 

  • Martens, L., Van Hese, J., De Sutter, D., De Wagter, C., & Malmgren, L. O. G. (1993). Electromagnetic field calculations used for exposure experiments on small animals in TEM-cells. Bioelectrochemistry Bioenergetics 30, 73–81.

    Article  Google Scholar 

  • Mihàly, A., & Bozòky, B. (1984a). Immunohistochemical localization of serum proteins in the hippocampus of human subjects with partial and generalized epilepsy and epileptiform convulsions. Acta Neuropathology, 127, 251–267.

    Google Scholar 

  • Mihàly, A., & Bozòky, B. (1984b). Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized and epileptiform convulsions. Acta Neuropathology, 65, 471–477.

    Article  Google Scholar 

  • Neubauer, C., Phelan, A. M., Kues, H., & Lange, D. G. (1990). Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex. Bioelectromagnetics, 11, 261–268.

    Article  CAS  Google Scholar 

  • Nittby, H., Grafström, G., Dong Ping, T., Brun, A., Persson, B., Salford, L. G., & Eberhardt, J. L. (2007). Cognitive impairments in rats after long-term exposure ot GSM-900 radiation. Submitted for publication.

  • Oldendorf, W. H. (1975). Permeability of the blood-brain barrier. In D. Tower (Ed.), The Nervous System. (pp. 229–289). New York: Raven Press.

    Google Scholar 

  • Oldendorf, W. H., Cornford, M. E., & Brown, W. J. (1977). The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Annals of Neurology, 1, 409–417.

    Article  CAS  Google Scholar 

  • Persson, B. R. R., Salford, L. G., & Brun, A. (1997). Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks, 3, 455–461.

    Article  Google Scholar 

  • Poulletier de Gannes, F., Haro, E., Taxile, M., Ladevze, E., Mayer, L., Lascau, M., Levêque, P., Ruffie, G., Billaudel, B., Lagroye, I., & Veyret, B. (2006). Do GSM-900 signals affect blood-brain barrier permeability and neuron viability? Abstract at the 28th Annual meeting of the Bioelectromagnetics Society (pp. 164–165). Cancun, Mexico.

  • Prato, F. S., Frappier, R. H., Shivers, R. R., & Kavaliers, M. (1990). Magnetic resonance imaging increases the blood-brain barrier permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats. Brain Research, 523, 301–304.

    Article  CAS  Google Scholar 

  • Prato, F. S., Wills, J. M., Roger, J., Frappier, H., Drost, D. J., Lee, T. Y., Shivers, R. R., & Zabel, P. (1994). Blood-brain barrier permeability in rats is altered by exposure to magnetic fields associated with magnetic resonance imaging at 1.5 T. Microscopy Research Technique 27, 528–534.

    Article  CAS  Google Scholar 

  • Rapoport, S. I. (1976). Blood-brain barrier in physiology and medicine. New York: Raven Press.

    Google Scholar 

  • Salahuddin, T. S., Kalimo, H., Johansson, B. B., & Olsson, Y. (1988). Observations on exsudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating longlasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathologica (Berl) 76, 1–10.

    Article  CAS  Google Scholar 

  • Salford, L. G., Brun, A., Eberhardt, J., Malmgren, L., & Persson, B. (1992). Electromagnetic field-induced permeability of the blood-brain barrier shown by immunohistochemical methods. In B. Nordén, & C. Ramel (Eds.), Interaction mechanism of low-level electromagnetic fields in living systems. (pp. 251–258). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Salford, L. G., Brun, A., Eberhardt, J. L., & Persson, B. R. R. (1993). Permeability of the blood-brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Bioelectrochemistry Bioenergitics, 30, 293–301.

    Article  Google Scholar 

  • Salford, L. G., Brun, A., Sturesson, K., Eberhardt, J. L., & Persson, B. R. R. (1994). Permeability of the blood-brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Microscopy Research Technique 27, 535–542.

    Article  CAS  Google Scholar 

  • Salford, L. G., Brun, A., & Persson, B. R. R. (1997). Brain tumour development in rats exposed to electromagnetic fields used in wireless cellular communication. Wireless Networks 3, 463–469.

    Article  Google Scholar 

  • Salford, L. G., Krogh, M., Grafstöm, G., Nittby, H., Rehn, G., Berlin, H., Eberhardt, J. L., Malmgren, L., Persson, R. B. R., & Widegren, B. (2006). GSM exposure changes gene expression in rat hippocampus and cortex. Abstract for the 4th International Workshop: “Biological Effects of Electromagnetic Fields” 16–20 Oct. 2006, Crete, Greece.

  • Salford, L. G., Persson, B., Malmgren, L., & Brun, A. (2001). Téléphonie Mobile et Barrière Sang-Cerveau. In: Pietteur Marco (Ed.), Téléphonie mobile—effects potentiels sur la santé des ondes électromagnétiques de haute fréquence (pp. 141–152). Belgium: Emburg.

  • Salford, L. G., Brun, A. E., Eberhardt, J. L., Malmgren, L., & Persson, B. R. R. (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environmental Health Perspectives 111, 881–883.

    Article  Google Scholar 

  • Shivers, R. R., Kavaliers, M., Teskey, G. C., Prato, E. S., Pelletier, R. M. (1987). Magnetic resonance imaging temporarily alters blood-brain barrier permeability in the rat. Neuroscience Letters 76, 25–31.

    Article  CAS  Google Scholar 

  • Sokrab, T. E. O., Johansson, B. B., Kalimo, H., & Olsson, Y. (1988). A transient hypertensive opening of the blood-brain barrier can lead to brain damage. Acta Neuropathology, 75, 557–565.

    Article  CAS  Google Scholar 

  • Sokrab, T. E., Kalimo, H., & Johansson, B. B. (1990). Parenchymal changes related to plasma protein extravasation in experimental seizures. Epilepsia 31, 1–8.

    Article  CAS  Google Scholar 

  • Stagg, R. B., Havel, L. H. III, Pastorian, K., Cain, C., Adey, W. R., & Byus, C. V. (2001). Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiation Research, 155, 584–92.

    Article  CAS  Google Scholar 

  • Thomas, W. E. (1999). Brain macrophages: On the role of pericytes and perivascular cells. Brain Research. Brain Research Reviews, 31, 42–57.

    Article  CAS  Google Scholar 

  • Töre, F., Dulou, P. E., Haro, E., Veyret, B., & Aubineau, P. (2001). Two-hour exposure to 2-W/kg, 900-MHZ GSM microwaves induces plasma protein extravasation in rat brain and dura mater. Proceedings of the 5th International congress of the EBEA (pp. 43–45). Helsinki, Finland.

  • Töre, F., Dulou, P. E., Haro, E., Veyret, B., & Aubineau, P. (2002). Effect of 2 h GSM-900 microwave exposures at 2.0, 0.5 and 0.12 W/kg on plasma protein extravasation in rat brain and dura mater. Proceedings of the 24th annual meeting of the BEMS (pp.␣61–62).

  • Van Hese, J., Martens, L., De Zutter, D., De Wagter, C., Malmgren, L., Persson, B. R. R, & Salford, L. G. (1991). Simulations of the effect of inhomogenities in TEM transmission cells using the FDTD-method. IEEE Transactions on Electromagnetic Compatibility, 34,292–298.

    Article  Google Scholar 

  • Williams, W. M., Lu, S. T., del Cerro, M., & Michaelson, S. M. (1984). Effect of 2,450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. D. Brain temperature and blood-brain barrier permeability to hydrophilic tracers. Brain Research, 319, 191–212.

    CAS  Google Scholar 

  • Yamaguchi, H., Tsurita, G., Ueno, S., Watanabe, S., Wake, K., Taki, M., Nagawa, H. (2003). 1,439 MHz pulsed TDMA fields affect performance of rats in a T-maze only when body temperature is elevated. Bioelectromagnetics 24, 223–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif G. Salford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salford, L.G., Nittby, H., Brun, A. et al. Non-thermal effects of EMF upon the mammalian brain: the Lund experience. Environmentalist 27, 493–500 (2007). https://doi.org/10.1007/s10669-007-9118-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9118-4

Keywords

Navigation