Advertisement

The Environmentalist

, Volume 27, Issue 4, pp 493–500 | Cite as

Non-thermal effects of EMF upon the mammalian brain: the Lund experience

  • Leif G. Salford
  • Henrietta Nittby
  • Arne Brun
  • Gustav Grafström
  • Jacob L. Eberhardt
  • Lars Malmgren
  • Bertil R. R. Persson
Article

Abstract

The environment in which biology exists has dramatically changed during the last decades. Life was formed during billions of years, exposed to, and shaped by the original physical forces such as gravitation, cosmic irradiation and the terrestrial magnetism. The existing organisms are created to function in harmony with these forces. However, in the late 19th century mankind introduced the use of electricity and during the very last decades, microwaves of the modern communication society spread around the world. Today one third of the world’s population is owner of the microwave-producing mobile phones. The question is: to what extent are living organisms affected by these ubiquitous radio frequency fields? Since 1988 our group has studied the effects upon the mammalian blood-brain barrier (BBB) by non-thermal radio frequency electromagnetic fields (RF-EMF). These have been revealed to cause significantly increased leakage of albumin through the BBB of exposed rats as compared to non-exposed animals—in a total series of about two thousand animals. One remarkable observation is the fact that the lowest energy levels give rise to the most pronounced albumin leakage. If mobile communication, even at extremely low energy levels, causes the users’ own albumin to leak out through the BBB, also other unwanted and toxic molecules in the blood, may leak into the brain tissue and concentrate in and damage the neurons and glial cells of the brain. In later studies we have shown that a 2-h exposure to GSM 915 MHz at non-thermal levels, gives rise to significant neuronal damage, seen 28 and 50 days after the exposure. In our continued research, the non-thermal effects (histology, memory functions) of long-term exposure for 13 months are studied as well as the effects of short term GSM 1,800 MHz upon gene expression. Most of our findings support that living organisms are affected by the non-thermal radio frequency fields. Studies from other laboratories in some cases find effects, while in other cases effects are not seen. Our conclusion is that all researchers involved in this field have the obligation to intensify this research in order to reduce, or avoid, the possible negative effects of the man made microwaves!

Keywords

Albumin Blood-brain barrier Mobile phones Neurons Radio frequency Electromagnetic fields Rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, E. N., & Kerns, J. M. (1981). Reversible microwave effects on the blood-brain barrier. Brain Research, 230, 153–164.CrossRefGoogle Scholar
  2. Bauréus Koch, C. L. M., Sommarin, M., Persson, B. R. R., Salford, L. G., & Eberhardt, J. L. (2003). Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics, 24, 395–402.CrossRefGoogle Scholar
  3. Belyaev, I. Y., Bauréus Koch, C., Terenius, O., Roxstrom-Lindquist, K., Malmgren, L. O. G., Sommer, W. H., Salford, L. G., & Persson, B. R. R. (2006). Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics, 27, 295–306.CrossRefGoogle Scholar
  4. Blanchard, J. P., & Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics, 15, 217–238.CrossRefGoogle Scholar
  5. De Pomerai, D. I., Smith, B., Dawe, A., North K., Smith, T., Archer, D. B., Duce, I. R., Jones, D., & Candido, E. P. (2003). Microwave radiation can alter protein conformation without bulk heating. FEBS Letters 543, 93–97.CrossRefGoogle Scholar
  6. Eberhardt, J. L., Persson, B. R. R., Brun, A. E., Malmgren, L. O., Grafström, G., & Salford, L. G. (2006). Long term effects of microwaes from GSM mobile phones on the rat brain. Abstract to the 4th International Workshop 16–20 Oct, Crete Greece.Google Scholar
  7. Eberhardt, J. L., Persson, B. R. R., Malmgren, L. O., Brun, A. E., & Salford, L. G. (2007). Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Submitted for publication.Google Scholar
  8. Eimerl, S., & Schramm, M. (1991). Acute glutamate toxicity and its potentiation by serum albumin are determined by the Ca2+ concentration. Neuroscience Letters, 130, 125–127.CrossRefGoogle Scholar
  9. Frank, R. N., Dutta S., & Mancini, M. A. (1987). Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Investigative Ophthalmology & Visual Science, 28, 1086–1091.Google Scholar
  10. Fredriksson, K., Kalimo, H., Nordborg, C., Johansson, B. B., & Olsson, Y. (1988). Nerve cell injury in the brain of stroke-prone spontaneously hypertensive rats. Acta Neuropathologica (Berl), 76, 227–237.CrossRefGoogle Scholar
  11. Fritze, K., Sommer, C., Schmitz, B., Mies, G., Hossmann, K.-A., Kiessling, M., & Wiessner, C. (1997). Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathologica, 94, 465–470.CrossRefGoogle Scholar
  12. Ghersi-Egea J. F., Minn A., Siest G. (1988). A new aspect of the protective functions of the blood-brain barrier: Activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sciences, 42, 2515–2523.CrossRefGoogle Scholar
  13. Hassel, B., Iversen, E. G., & Fonnum, F. (1994). Neurotoxicity of albumin in vivo. Neuroscience Letters, 167, 29–32.CrossRefGoogle Scholar
  14. Hyland, G. (2000). Physics and biology of mobile telephony. The Lancet, 356, 1833–1836.CrossRefGoogle Scholar
  15. ICNIRP. (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics, 74, 494–522.Google Scholar
  16. Ilhan, A., Gurel, A., Armutcu, F., Kamisili, S., Iraz, M., Akyol, O., & Ozen, S. (2004). Ginkgo biloba prevents mobile phoneinduced oxidative stress in rat brain. Clinica Chimica Acta, 340, 153–162.CrossRefGoogle Scholar
  17. Martens, L., Van Hese, J., De Sutter, D., De Wagter, C., & Malmgren, L. O. G. (1993). Electromagnetic field calculations used for exposure experiments on small animals in TEM-cells. Bioelectrochemistry Bioenergetics 30, 73–81.CrossRefGoogle Scholar
  18. Mihàly, A., & Bozòky, B. (1984a). Immunohistochemical localization of serum proteins in the hippocampus of human subjects with partial and generalized epilepsy and epileptiform convulsions. Acta Neuropathology, 127, 251–267.Google Scholar
  19. Mihàly, A., & Bozòky, B. (1984b). Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized and epileptiform convulsions. Acta Neuropathology, 65, 471–477.CrossRefGoogle Scholar
  20. Neubauer, C., Phelan, A. M., Kues, H., & Lange, D. G. (1990). Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex. Bioelectromagnetics, 11, 261–268.CrossRefGoogle Scholar
  21. Nittby, H., Grafström, G., Dong Ping, T., Brun, A., Persson, B., Salford, L. G., & Eberhardt, J. L. (2007). Cognitive impairments in rats after long-term exposure ot GSM-900 radiation. Submitted for publication.Google Scholar
  22. Oldendorf, W. H. (1975). Permeability of the blood-brain barrier. In D. Tower (Ed.), The Nervous System. (pp. 229–289). New York: Raven Press.Google Scholar
  23. Oldendorf, W. H., Cornford, M. E., & Brown, W. J. (1977). The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Annals of Neurology, 1, 409–417.CrossRefGoogle Scholar
  24. Persson, B. R. R., Salford, L. G., & Brun, A. (1997). Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks, 3, 455–461.CrossRefGoogle Scholar
  25. Poulletier de Gannes, F., Haro, E., Taxile, M., Ladevze, E., Mayer, L., Lascau, M., Levêque, P., Ruffie, G., Billaudel, B., Lagroye, I., & Veyret, B. (2006). Do GSM-900 signals affect blood-brain barrier permeability and neuron viability? Abstract at the 28th Annual meeting of the Bioelectromagnetics Society (pp. 164–165). Cancun, Mexico.Google Scholar
  26. Prato, F. S., Frappier, R. H., Shivers, R. R., & Kavaliers, M. (1990). Magnetic resonance imaging increases the blood-brain barrier permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats. Brain Research, 523, 301–304.CrossRefGoogle Scholar
  27. Prato, F. S., Wills, J. M., Roger, J., Frappier, H., Drost, D. J., Lee, T. Y., Shivers, R. R., & Zabel, P. (1994). Blood-brain barrier permeability in rats is altered by exposure to magnetic fields associated with magnetic resonance imaging at 1.5 T. Microscopy Research Technique 27, 528–534.CrossRefGoogle Scholar
  28. Rapoport, S. I. (1976). Blood-brain barrier in physiology and medicine. New York: Raven Press.Google Scholar
  29. Salahuddin, T. S., Kalimo, H., Johansson, B. B., & Olsson, Y. (1988). Observations on exsudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating longlasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathologica (Berl) 76, 1–10.CrossRefGoogle Scholar
  30. Salford, L. G., Brun, A., Eberhardt, J., Malmgren, L., & Persson, B. (1992). Electromagnetic field-induced permeability of the blood-brain barrier shown by immunohistochemical methods. In B. Nordén, & C. Ramel (Eds.), Interaction mechanism of low-level electromagnetic fields in living systems. (pp. 251–258). Oxford, UK: Oxford University Press.Google Scholar
  31. Salford, L. G., Brun, A., Eberhardt, J. L., & Persson, B. R. R. (1993). Permeability of the blood-brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Bioelectrochemistry Bioenergitics, 30, 293–301.CrossRefGoogle Scholar
  32. Salford, L. G., Brun, A., Sturesson, K., Eberhardt, J. L., & Persson, B. R. R. (1994). Permeability of the blood-brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Microscopy Research Technique 27, 535–542.CrossRefGoogle Scholar
  33. Salford, L. G., Brun, A., & Persson, B. R. R. (1997). Brain tumour development in rats exposed to electromagnetic fields used in wireless cellular communication. Wireless Networks 3, 463–469.CrossRefGoogle Scholar
  34. Salford, L. G., Krogh, M., Grafstöm, G., Nittby, H., Rehn, G., Berlin, H., Eberhardt, J. L., Malmgren, L., Persson, R. B. R., & Widegren, B. (2006). GSM exposure changes gene expression in rat hippocampus and cortex. Abstract for the 4th International Workshop: “Biological Effects of Electromagnetic Fields” 16–20 Oct. 2006, Crete, Greece.Google Scholar
  35. Salford, L. G., Persson, B., Malmgren, L., & Brun, A. (2001). Téléphonie Mobile et Barrière Sang-Cerveau. In: Pietteur Marco (Ed.), Téléphonie mobile—effects potentiels sur la santé des ondes électromagnétiques de haute fréquence (pp. 141–152). Belgium: Emburg.Google Scholar
  36. Salford, L. G., Brun, A. E., Eberhardt, J. L., Malmgren, L., & Persson, B. R. R. (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environmental Health Perspectives 111, 881–883.CrossRefGoogle Scholar
  37. Shivers, R. R., Kavaliers, M., Teskey, G. C., Prato, E. S., Pelletier, R. M. (1987). Magnetic resonance imaging temporarily alters blood-brain barrier permeability in the rat. Neuroscience Letters 76, 25–31.CrossRefGoogle Scholar
  38. Sokrab, T. E. O., Johansson, B. B., Kalimo, H., & Olsson, Y. (1988). A transient hypertensive opening of the blood-brain barrier can lead to brain damage. Acta Neuropathology, 75, 557–565.CrossRefGoogle Scholar
  39. Sokrab, T. E., Kalimo, H., & Johansson, B. B. (1990). Parenchymal changes related to plasma protein extravasation in experimental seizures. Epilepsia 31, 1–8.CrossRefGoogle Scholar
  40. Stagg, R. B., Havel, L. H. III, Pastorian, K., Cain, C., Adey, W. R., & Byus, C. V. (2001). Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiation Research, 155, 584–92.CrossRefGoogle Scholar
  41. Thomas, W. E. (1999). Brain macrophages: On the role of pericytes and perivascular cells. Brain Research. Brain Research Reviews, 31, 42–57.CrossRefGoogle Scholar
  42. Töre, F., Dulou, P. E., Haro, E., Veyret, B., & Aubineau, P. (2001). Two-hour exposure to 2-W/kg, 900-MHZ GSM microwaves induces plasma protein extravasation in rat brain and dura mater. Proceedings of the 5th International congress of the EBEA (pp. 43–45). Helsinki, Finland.Google Scholar
  43. Töre, F., Dulou, P. E., Haro, E., Veyret, B., & Aubineau, P. (2002). Effect of 2 h GSM-900 microwave exposures at 2.0, 0.5 and 0.12 W/kg on plasma protein extravasation in rat brain and dura mater. Proceedings of the 24th annual meeting of the BEMS (pp.␣61–62).Google Scholar
  44. Van Hese, J., Martens, L., De Zutter, D., De Wagter, C., Malmgren, L., Persson, B. R. R, & Salford, L. G. (1991). Simulations of the effect of inhomogenities in TEM transmission cells using the FDTD-method. IEEE Transactions on Electromagnetic Compatibility, 34,292–298.CrossRefGoogle Scholar
  45. Williams, W. M., Lu, S. T., del Cerro, M., & Michaelson, S. M. (1984). Effect of 2,450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. D. Brain temperature and blood-brain barrier permeability to hydrophilic tracers. Brain Research, 319, 191–212.Google Scholar
  46. Yamaguchi, H., Tsurita, G., Ueno, S., Watanabe, S., Wake, K., Taki, M., Nagawa, H. (2003). 1,439 MHz pulsed TDMA fields affect performance of rats in a T-maze only when body temperature is elevated. Bioelectromagnetics 24, 223–230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leif G. Salford
    • 1
  • Henrietta Nittby
    • 1
  • Arne Brun
    • 2
  • Gustav Grafström
    • 1
    • 3
  • Jacob L. Eberhardt
    • 3
  • Lars Malmgren
    • 4
  • Bertil R. R. Persson
    • 3
  1. 1.Department of Neurosurgery, Institute of Clinical SciencesLund University, The Rausing Laboratory and Lund University HospitalLundSweden
  2. 2.Department of NeuropathologyLund University, The Rausing Laboratory and Lund University HospitalLundSweden
  3. 3.Department of Medical Radiation PhysicsLund University, The Rausing Laboratory and Lund University HospitalLundSweden
  4. 4.Department of Applied ElectronicsLund University, The Rausing Laboratory and Lund University HospitalLundSweden

Personalised recommendations