, Volume 26, Issue 1, pp 63–70 | Cite as

Predicting RUSLE (Revised Universal Soil Loss Equation) Monthly Erosivity Index from Readily Available Rainfall Data in Mediterranean Area

  • Nazzareno Diodato


Seasonal rainerosivity is important in the structure and dynamics of Mediterranean ecosystems. The present paper contributes to the quantitative assessment of RUSLE's monthly erosion index in a data-scarce Mediterranean region. Therefore, a regionalized relationship for estimating monthly erosion index (EI30-month) from only three rainfall parameters has been obtained. Knowledge of the seasonal and annual distribution of erosivity index, permit soil and water conservationists to make improved designs for erosion control, water harvesting or small hydraulic structures. Although a few long data sets were used in the analysis, validation with established monthly erosivity index values from other Italian locations, suggest that the model presented (r2 = 0.973) is robust. It is recommended to monthly erosivity estimates when experimental data-scarce rainfall become available.


Erosivity index rainfall Revised Universal Soil Loss Equation RUSLE Mediterranean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, A., Michael, A., Zartl, A. and Werner, F.: 2000, Impact of erosion-transported overburden dump materials on water quality in Lake Cospuden evolved from a former open cast lignite mine south of Leipzig, Germany. Environmental Geology 39 (6), 683–688.CrossRefGoogle Scholar
  2. Andrew, A. and Mersey, M.J.E.: 1999, Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38, 109–129.Google Scholar
  3. Arnoldus, H.M.J.: 1977, Methodology used to determine the maximum potential average soil loss due to sheet and rill erosion in Marocco. Assessing Soil Degradation, FAO Soils Bullettin, Roma 34, 8–9.Google Scholar
  4. Aronica, G. and Ferro, V.: 1997, Rainfall erosivity over the Calabrian region. Hydrological Science Journal 42 (1), 35–48.Google Scholar
  5. Arshad, M.A. and Martin, S.: 2002, Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment 88, 153–160.CrossRefGoogle Scholar
  6. Bagarello, V. and D'Asaro, F.: 1994, Estimating single storm erosion index. Transactions of the American Society of Agriculture Engineering ASAE 3, 785–791.Google Scholar
  7. Bartolini, D., Borselli, L., Calzolari, C., De Alba, S., Guermandi, M., Laruccia, N., Torri, D. and Ungaro, F.: 2003, Soil erosion processes assessment in hilly and montainous areas of Regione Emilia–Romagna. In Proceedings: 4th European Congress on Regional Geoscientific Cartografy and Information Systems, Bologna – Italy, June 17th–20th 2003, Vol. I, 122–123.Google Scholar
  8. Bazzoffi, P., Pellegrini, S., Chisci, G., Papini, R. and Scagnozzi, A.: 1997, Erosione e deflussi a scala parcellare e di bacino in suoli argillosi a diversa utilizzazione nella val d'Era. Agricoltura Ricerca 170, 5–20.Google Scholar
  9. Bergsma, E., Charman, P., Gibbons, F., Humi, H., Moldenhauer, W. C. and Panichapong, S.: 1996, Terminology for soil erosion and conservation. International Society of Soil Science (ISSS), UK.Google Scholar
  10. Boggs, G., Devonport, C., Evans, K. and Puig, P.: 2001, GIS–based rapid assessment of erosion risk in a small catchment in the wet/dry Tropics of Australia. Land Degradation & Development 12, 417–434.CrossRefGoogle Scholar
  11. Bollinne, A., Laurant, A. and Boon, W.: 1979, L'érosivité des précipitations a Florennes. Révision de la carte des isohyétes et de la carte d'erosivite de la Belgique. Bulletin Société Géographique de Liége 15, 77–99.Google Scholar
  12. Calzolari, C., Bartolini, D., Borselli, L., Sanchiz, P. S., Torri, D. and Ungaro, F.: 2001, Caratterizzazione delle principali unità di suolo presenti nel territorio di collina in termini di rischio di erosione: la definizione del parametro R, erosività delle piogge, per il modello RUSLE. Regione Emilia Romagna – Servizio Cartografico and Geologico, C.N.R. IGES Technical Report 3.3.Google Scholar
  13. Conedera, M., Peter, L., Marxer, P., Forster, F., Rickenmann, D. and Re, L.: 2003, Consequences of forest fires on the hydrogeological response of mountain catchments: a case study of the Riale Buffaga, Ticino, Switzerland. Earth Surface Processes Landforms 28, 117–129.Google Scholar
  14. Cooke, R.U. and Doornkamp, J.C.: 1990, Geomorphology in environmental management. Clarendon Press., Oxford.Google Scholar
  15. Coppus, R. and Imeson, A.C.: 2002, Extreme events controlling erosion and sediment transport in a semi-arid sub-Andean Valley. Earth Surface Processes Landforms 27, 1365–1375.Google Scholar
  16. Cox, C. and Madramootoo, C.: 1998, Application of geographic information systems in watershed management planning in St. Lucia. Computers and Electronics in Agriculture 20, 229–250.CrossRefGoogle Scholar
  17. Crisci, A., Gozzini, B., Meneguzzo, F., Pagliara, S. and Maracchi, G.: 2002, Extreme rainfall in a changing climate: regional analysis and hydrological implications in Tuscany. Hydrological Processes 16, 1261–1274.CrossRefGoogle Scholar
  18. De Santos Loureiro, N. and de Azevedo Couthino, M.: 2001, A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data applied to the Algarve region, Portugal. Journal of Hydrology 250 (1–4), 12–18.Google Scholar
  19. Deumlich, D., Thiere, J., Frielinghaus, M. and Voelker, L.: 2000, MMK characterisation and classification of site conditions in the new federal states of Germany. European Soil Bureau, Institute for Soil Landscape Research, Centre for Agricultural and Land Use Research, Germany, Report No. 4, 474–478.Google Scholar
  20. Diodato N.: 2005, Geostatistical uncertainty modelling for the environmental hazard assessment during single erosive rainstorm events. Environmental Monitoring and Assessment 105, 25–42.CrossRefGoogle Scholar
  21. Diodato, N.: 2004, Estimate RUSLE's rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences 8 (1), 103–107.Google Scholar
  22. D'Odorico, P., Yoo, J. and Over, T.M.: 2001, An Assessment of ENSO-Induced Patterns of Rainfall Erosivity in the Southwestern United States. Journal of Climate 14, 4230–4242.Google Scholar
  23. Esposito, S. and Beltrano, M.C.: 1996, La Rete Agrometeorologica Nazionale. Agricoltura 277, 72–84.Google Scholar
  24. Foster, G.R.: 2004, User's reference guide: Revised Universal Soil Loss Equation (RUSLE2). Report USDA.Google Scholar
  25. Hooke, J.M. and Mant, J.M.: 2000, Geomorphological impacts of a flood event on ephemeral channels in SE Spain. Geomorphology 34, 163–180.CrossRefGoogle Scholar
  26. Istok, J.D., McCool, D.K., King, L.G. and Boersma, L.: 1986, Effect of the rainfall measurement interval on EI calculation. Transaction American Society of Agricultural Engineers ASAE 29, 730–734.Google Scholar
  27. Lal, R.: 1997, Degradation and resilience of soils. Phil. Transaction Royal Society London B352, 997–1010.Google Scholar
  28. Le Bissonnais, Y., Montier, C., Jamagne, M., Daroussin, J. and King, D.: 2002, Mapping erosion risk for cultivated soil in France. Catena 46, 207–220.CrossRefGoogle Scholar
  29. Lo, A., El-Swaify, S.A., Dangler E.W. and Shinshiro, L.: 1985, Effectiveness of EI30 as an erosivity index in Hawaii. In: Soil erosion and conservation (ed. by A. El-Swaify, W. C. Moldenhauer and A. Lo), Soil Conservation Society of America, Ankeny, pp. 384–392.Google Scholar
  30. Mannaerts, C.M. and Gabriels, D.: 2000, Rainfall erosivity in Cape Verde. Soil & Tillage Research 55, 207–212.CrossRefGoogle Scholar
  31. Martìnez-Casasnovas, J.A., Ramos, M.C. and Ribes-Dasi, M.: 2002, Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105, 125–140.Google Scholar
  32. Mati, B.M., Morgan, R.P.C., Gichuki, F.N., Quinton, J.N., Brewer, T.R. and Liniger, H.P.: 2000, Assessment of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng'iro North basin of Kenya. JAGeol. 2 (1), 1–9.Google Scholar
  33. Meneguzzo, F., Giarola, S., Grippa, G. and Gozzini, B.: 1996, Mesoscale operational rainfall forecasts in north-western Tuscany. Bollettino Geofisico 19 (3–4), 39–55.Google Scholar
  34. Mitasova, H., Hofierka, J., Zlocha, M. and Iverson, L.R.: 1996, Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Science 10 (5), 629–641.Google Scholar
  35. Mitra, B., Scott, H.D., Dixon, J.C. and McKimmey, J.M.: 1998, Applications of fuzzy logic to the prediction of soil erosion in a large watershed. Geoderma 86, 183–209.CrossRefGoogle Scholar
  36. Paolucci, T., Bernardini, L., Ferretti, R. and Visconti, G.: 1999, Flood forecast a hight resolution limited area model. Il Nuovo Cimento 22 C (5), 727–736.Google Scholar
  37. Perini, L. and Beltrano, M.C.: 2003, Linking of traditional and automatic stations data : operational experience of UCEA. In International Conference on Experiences with Automatic Weather Stations, Proceedings of the European Conference, Spain, Feb. 19–21, 2003, DGINM–Ministero dell'Ambiente Spagnolo, Malaga.Google Scholar
  38. Ramírez, J.A. and Finnerty, B.: 1996, Precipitation and water-table effects on agricultural production. Journal of Irrigation and Drainage Engineering 122, 164–171.Google Scholar
  39. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. and Yoder, D.C.: 1997, Predicting soil erosion by water: a guide to conservation planning with the revised Universal Soil Loss Equation (RUSLE). USDA, Agricultural Handbook 703, 384 pp.Google Scholar
  40. Renard, K.G. and Freimund, J.R.: 1994, Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology 157, 287–306.CrossRefGoogle Scholar
  41. Renschler, C.S., Mannaerts, C. and Diekkruger, B.: 1999, Evaluating spatial and temporal variability in soil erosion risk-rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena 34 (3–4), 209–225.Google Scholar
  42. Renschler, C. and Harbor, J.: 2002, Soil erosion assessment tools from point to regional scales the role of geomorphologists in land management research and implementation. Geomorphology 47 (2–4), 189–209.Google Scholar
  43. Rogler, H. and Schwertmann, U.: 1981, Erosivitat der Niederschlage un Isoerodenkarte Bayerns. Zeitschrift fur Kulturtechnik und Flurbereiningung 22, 99–112.Google Scholar
  44. Sonneveld, B.G.J.S. and Nearing, M.A.: 2003, A nonparametric/parametric analysis of the Universal Soil Loss Equation. Catena 52, 9–21.CrossRefGoogle Scholar
  45. Steer, A.: 1998, Making development sustainable. Advanced Geo-Ecological 31, 857–865.Google Scholar
  46. Svorin, J.: 2003, A test three soilerosion models incorporated intoa geographical information system. Hydrological Processes 17, 967–977.CrossRefGoogle Scholar
  47. Toy, T.J. and Osterkamp, W.R.: 1995, The applicability of RUSLE to geomorphic studies. Journal of Soil and Water Conservation 50 (5), 498–503.Google Scholar
  48. Turnage, K.M., Lee, S.Y., Foss, J.E., Kim, K.H. and Larsen, I.L.: 1997, Comparison of soil and depostion rates using radiocesium, RUSLE, and buried soils in dolines in East Tennessee. Environmental Geology 29 (1–2), 1–10.Google Scholar
  49. van der Knijff, J.M., Jones, R.J.A. and Montanarella L.: 2000, Soil erosion risk assessment in Italy. European Commission—European Soil Bureau. 52 p.Google Scholar
  50. Wang, G., Gertner, G., Singh, V., Shinkareva, S., Parysow, P. and Anderson, A.: 2002, Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation: a case study of the rainfall—runoff erosivity R factor. Ecological Modelling 153 (1–2), 143–155.Google Scholar
  51. Wischmeier, W.H.: 1959, A rainfall erosion index for a universal soil loss equation. Soil Sci. Soc. of Am. Proc. 23 (3), 246–249.Google Scholar
  52. Wischmeier, W.H. and Smith D.D.: 1978, Predicting rainfall erosion losses. Admin. U.S. dept. Agr. Washington, D.C. Agriculture Hand-book. Sci. And Educ. 357. p. 58Google Scholar
  53. Wainwright, J.: 1996, Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. Catena 26 (1–2), 27–47.Google Scholar
  54. Yu, B. and Rosewell, C.J., 1996: A robust estimator of the R-factor for the Universal Soil Loss Equation. Transaction of the Society of Agricultural Engineers American ASAE 2, 559–561.Google Scholar
  55. Yu, B., Hashim, G.M. and Eusof, Z.: 2001, Estimating the r-factor with limited rainfall data: a case study from peninsular Malysia. Journal of Soil and Water Conservation 56 (2), 101–105.Google Scholar
  56. Yu, B.: 2001, Using CLIGEN to generate RUSLE climate inputs. Transaction of the Society of Agricultural Engineers American ASAE 45 (4), 993–1001.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Monte Pino Research Observatory on Climate and LandscapeGTOS/ TEMS Network – Terrestrial Ecosystem Monitoring Sites (FAO–United Nations)BeneventoItaly

Personalised recommendations