Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review

Abstract

The presence of contaminants of emerging concern (CECs) in wastewater treatment plant effluents is a significant underlying health risk and environmental concern. CECs consist of a wide variety of contaminants, including pharmaceuticals and personal care products, hormones, steroids, alkyl-phenols, flame retardants and pesticides. Their impact is of particular relevance to agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. Meanwhile, marijuana reform is accelerating in the US, based on the scope and pace of legalization efforts and on wider acceptance in polls of voters. In this review, the effectiveness of industrial hemp (Cannabis sativa L.) in phytoremediation and hyperaccumulation of organic contaminants (e.g., benzo(a)pyrene, Naphthalene, and Chrysene) and heavy metal (e.g., Selenium and Cobalt) from either aqueous solutions or contaminated soils has been reviewed. The potential of industrial hemp as a renewable resource to biodegrade and/or decontaminate CECs is explored. Disposal strategies of this new phytoremediation crop that promote circular economy are also discussed. According to this current review, we believe the use of industrial hemp for phytoremediation is promising to have a sustainable, environmentally friendly and economically viable future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alvarez, D. A., Maruya, K. A., Dodder, N. G., Lao, W. J., Furlong, E. T., & Smalling, K. L. (2014). Occurrence of contaminants of emerging concern along the California coast (2009–10) using passive sampling devices. Marine Pollution Bulletin, 81(2), 347–354. https://doi.org/10.1016/j.marpolbul.2013.04.022.

    CAS  Article  Google Scholar 

  2. Barbosa, B., Costa, J., Fernando, A. L., & Papazoglou, E. G. (2015). Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Industrial Crops and Products, 68, 17–23. https://doi.org/10.1016/j.indcrop.2014.07.007.

    CAS  Article  Google Scholar 

  3. Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257–279. https://doi.org/10.1016/j.watres.2016.02.047.

    CAS  Article  Google Scholar 

  4. Barbour, J. P., Smith, J. A., & Chiou, C. T. (2005). Sorption of aromatic organic pollutants to grasses from water. Environmental Science & Technology, 39(21), 8369–8373. https://doi.org/10.1021/es0504946.

    CAS  Article  Google Scholar 

  5. Barta, Z., Oliva, J. M., Ballesteros, I., Dienes, D., Ballesteros, M., & Reczey, K. (2010). Refining hemp hurds into fermentable sugars or ethanol. Chemical and Biochemical Engineering Quarterly, 24(3), 331–339.

    CAS  Google Scholar 

  6. Bartha, B., Huber, C., Harpaintner, R., & Schröder, P. (2010). Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environmental Science and Pollution Research, 17(9), 1553–1562. https://doi.org/10.1007/s11356-010-0342-y.

    CAS  Article  Google Scholar 

  7. Bartha, B., Huber, C., & Schroder, P. (2014). Uptake and metabolism of diclofenac in Typha latifolia—how plants cope with human pharmaceutical pollution. Plant Science, 227, 12–20. https://doi.org/10.1016/j.plantsci.2014.06.001.

    CAS  Article  Google Scholar 

  8. Becerra-Castro, C., Lopes, A. R., Vaz-Moreira, I., Silva, E. F., Manaia, C. M., & Nunes, O. C. (2015). Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environment International, 75, 117–135. https://doi.org/10.1016/j.envint.2014.11.001.

    CAS  Article  Google Scholar 

  9. Benelli, G., Pavela, R., Lupidi, G., Nabissi, M., Petrelli, R., Kamte, S. L. N., et al. (2018a). The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environmental Science and Pollution Research, 25(11), 10515–10525. https://doi.org/10.1007/s11356-017-0635-5.

    CAS  Article  Google Scholar 

  10. Benelli, G., Pavela, R., Petrelli, R., Cappellacci, L., Santini, G., Fiorini, D., et al. (2018b). The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Industrial Crops and Products, 122, 308–315. https://doi.org/10.1016/j.indcrop.2018.05.032.

    CAS  Article  Google Scholar 

  11. Bolognesi, S., Bernardi, G., Callegari, A., Dondi, D., & Capodaglio, A. G. (2019). Biochar production from sewage sludge and microalgae mixtures: Properties, sustainability and possible role in circular economy. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00572-5.

    Article  Google Scholar 

  12. Boonsaner, M., & Hawker, D. (2010). Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Science of the Total Environment, 408(7), 1731–1737. https://doi.org/10.1016/j.scitotenv.2009.12.032.

    CAS  Article  Google Scholar 

  13. Bourmaud, A., Le Duigou, A., & Baley, C. (2011). What is the technical and environmental interest in reusing a recycled polypropylene–hemp fiber composite? Polymer Degradation and Stability, 96(10), 1732–1739. https://doi.org/10.1016/j.polymdegradstab.2011.08.003.

    CAS  Article  Google Scholar 

  14. Bowyer, J. L. (2001). Industrial hemp (Cannabis sativa L.) as a papermaking raw material in Minnesota: Technical, economic, and environmental considerations. Department of Wood & Paper Science Report Series.

  15. Burken, J. G. (2003). Uptake and metabolism of organic compounds: Green-liver model. In S. C. McCurtcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants. Hoboken, NJ: Wiley. https://doi.org/10.1002/047127304X.ch2.

    Google Scholar 

  16. Calderón-Preciado, D., Renault, Q., Matamoros, V., Cañameras, N., & Bayona, J. M. (2012). Uptake of organic emergent contaminants in spath and lettuce: An in vitro experiment. Journal of Agricultural and Food Chemistry, 60(8), 2000–2007. https://doi.org/10.1021/jf2046224.

    CAS  Article  Google Scholar 

  17. Campbell, S., Paquin, D., Awaya, J. D., & Li, Q. X. (2002). Remediation of benzo [a] pyrene and chrysene-contaminated soil with industrial hemp (Cannabis sativa). International Journal of Phytoremediation, 4(2), 157–168. https://doi.org/10.1080/15226510208500080.

    CAS  Article  Google Scholar 

  18. Casey, F. X. M., Larsen, G. L., Hakk, H., & Simunek, J. (2003). Fate and transport of 17 beta-estradiol in soil-water systems. Environmental Science & Technology, 37(11), 2400–2409. https://doi.org/10.1021/es026153z.

    CAS  Article  Google Scholar 

  19. Chigbo, C., Batty, L., & Bartlett, R. (2013). Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere, 90(10), 2542–2548. https://doi.org/10.1016/j.chemosphere.2012.11.007.

    CAS  Article  Google Scholar 

  20. Cripps, A., & Fovargue, J. (2004). Crops in construction handbook. London: CIRIA.

    Google Scholar 

  21. Cui, H., de Angelis, M. H., & Schröder, P. (2017). Iopromide exposure in Typha latifolia L.: Evaluation of uptake, translocation and different transformation mechanisms in planta. Water Research, 122, 290–298. https://doi.org/10.1016/j.watres.2017.06.004.

    CAS  Article  Google Scholar 

  22. Cui, H. B., Fan, Y. C., Yang, J., Xu, L., Zhou, J., & Zhu, Z. Q. (2016). In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil. Chemosphere, 161, 233–241. https://doi.org/10.1016/j.chemosphere.2016.07.022.

    CAS  Article  Google Scholar 

  23. Dordio, A. V., Belo, M., Teixeira, D. M., Carvalho, A. J. P., Dias, C. M. B., Pico, Y., et al. (2011). Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresource Technology, 102(17), 7827–7834. https://doi.org/10.1016/j.biortech.2011.06.050.

    CAS  Article  Google Scholar 

  24. Dordio, A. V., Duarte, C., Barreiros, M., Carvalho, A. J. P., Pinto, A. P., & da Costa, C. T. (2009). Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.—potential use for phytoremediation? Bioresource Technology, 100(3), 1156–1161. https://doi.org/10.1016/j.biortech.2008.08.034.

    CAS  Article  Google Scholar 

  25. Escalante-Espinosa, E., Gallegos-Martínez, M. E., Favela-Torres, E., & Gutiérrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59(3), 405–413. https://doi.org/10.1016/j.chemosphere.2004.10.034.

    CAS  Article  Google Scholar 

  26. Evrard, A., & De Herde, A. (2010). Hygrothermal performance of lime-hemp wall assemblies. Journal of Building Physics, 34(1), 5–25. https://doi.org/10.1177/1744259109355730.

    Article  Google Scholar 

  27. Fairbairn, D. J., Karpuzcu, M. E., Arnold, W. A., Barber, B. L., Kaufenberg, E. F., Koskinen, W. C., et al. (2016). Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Science of the Total Environment, 551, 605–613. https://doi.org/10.1016/j.scitotenv.2016.02.056.

    CAS  Article  Google Scholar 

  28. Ferro, A. M., Kennedy, J., & LaRue, J. C. (2013). Phytoremediation of 1, 4-dioxane-containing recovered groundwater. International Journal of Phytoremediation, 15(10), 911–923. https://doi.org/10.1080/15226514.2012.687018.

    CAS  Article  Google Scholar 

  29. Fike, J. (2016). Industrial hemp: Renewed opportunities for an ancient crop. Critical Reviews in Plant Sciences, 35(5–6), 406–424. https://doi.org/10.1080/07352689.2016.1257842.

    Article  Google Scholar 

  30. Fu, Q., Dudley, S., Sun, C., Schlenk, D., & Gan, J. (2018). Stable isotope labeling-assisted metabolite probing for emerging contaminants in plants. Analytical Chemistry, 90(18), 11040–11047. https://doi.org/10.1021/acs.analchem.8b02807.

    CAS  Article  Google Scholar 

  31. Fu, Q., Zhang, J., Borchardt, D., Schlenk, D., & Gan, J. (2017). Direct conjugation of emerging contaminants in Arabidopsis: Indication for an overlooked risk in plants? Environmental Science & Technology, 51(11), 6071–6081. https://doi.org/10.1021/acs.est.6b06266.

    CAS  Article  Google Scholar 

  32. Gagné, F., Blaise, C., & André, C. (2006). Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicology and Environmental Safety, 64(3), 329–336. https://doi.org/10.1016/j.ecoenv.2005.04.004.

    CAS  Article  Google Scholar 

  33. Gawrońska, H., & Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L plants. Air Quality, Atmosphere & Health, 8(3), 265–272. https://doi.org/10.1007/s11869-014-0285-4.

    CAS  Article  Google Scholar 

  34. Gonzalez-Garcia, S., Hospido, A., Feijoo, G., & Moreira, M. T. (2010). Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax. Resources Conservation and Recycling, 54(11), 923–930. https://doi.org/10.1016/j.resconrec.2010.01.011.

    Article  Google Scholar 

  35. González-García, S., Luo, L., Moreira, M. T., Feijoo, G., & Huppes, G. (2012). Life cycle assessment of hemp hurds use in second generation ethanol production. Biomass and Bioenergy, 36, 268–279. https://doi.org/10.1016/j.biombioe.2011.10.041.

    CAS  Article  Google Scholar 

  36. Grifoni, M., Rosellini, I., Angelini, P., Petruzzelli, G., & Pezzarossa, B. (2020). The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environmental Pollution, 265, 114950. https://doi.org/10.1016/j.envpol.2020.114950.

    CAS  Article  Google Scholar 

  37. Gulkowska, A., Leung, H. W., So, M. K., Taniyasu, S., Yamashita, N., Yeung, L. W. Y., et al. (2008). Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen China. Water Research, 42(1), 395–403. https://doi.org/10.1016/j.watres.2007.07.031.

    CAS  Article  Google Scholar 

  38. Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment- a review. Chemosphere, 36(2), 357–393. https://doi.org/10.1016/S0045-6535(97)00354-8.

    Article  Google Scholar 

  39. He, Y. J., Langenhoff, A. A. M., Sutton, N. B., Rijnaarts, H. H. M., Blokland, M. H., Chen, F. R., et al. (2017). Metabolism of ibuprofen by phragmites australis: Uptake and phytodegradation. Environmental Science & Technology, 51(8), 4576–4584. https://doi.org/10.1021/acs.est.7b00458.

    CAS  Article  Google Scholar 

  40. Herklotz, P. A., Gurung, P., Vanden Heuvel, B., & Kinney, C. A. (2010). Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere, 78(11), 1416–1421. https://doi.org/10.1016/j.chemosphere.2009.12.048.

    CAS  Article  Google Scholar 

  41. Holling, C. S., Bailey, J. L., Heuvel, B. V., & Kinney, C. A. (2012). Uptake of human pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified and biosolids-amended soils. Journal of Environmental Monitoring, 14(11), 3029–3036. https://doi.org/10.1039/c2em30456b.

    CAS  Article  Google Scholar 

  42. Hou, J. J., Zhang, X. T., Liu, S. J., Zhang, S. D., & Zhang, Q. Z. (2020). A critical review on bioethanol and biochar production from lignocellulosic biomass and their combined application in generation of high-value byproducts. Energy Technology. https://doi.org/10.1002/ente.202000025.

    Article  Google Scholar 

  43. Huber, C., Bartha, B., Harpaintner, R., & Schröder, P. (2009). Metabolism of acetaminophen (paracetamol) in plants—two independent pathways result in the formation of a glutathione and a glucose conjugate. Environmental Science and Pollution Research, 16(2), 206. https://doi.org/10.1007/s11356-008-0095-z.

    CAS  Article  Google Scholar 

  44. Huesemann, M. H., Hausmann, T. S., Fortman, T. J., Thom, R. M., & Cullinan, V. (2009). In situ phytoremediation of PAH-and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecological Engineering, 35(10), 1395–1404. https://doi.org/10.1016/j.ecoleng.2009.05.011.

    Article  Google Scholar 

  45. Husain, R., Weeden, H., Bogush, D., Deguchi, M., Soliman, M., Potlakayala, S., et al. (2019). Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS ONE, 14(8), e0221570. https://doi.org/10.1371/journal.pone.0221570.

    CAS  Article  Google Scholar 

  46. Ip, K., & Miller, A. (2012). Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK. Resources, Conservation and Recycling, 69, 1–9. https://doi.org/10.1016/j.resconrec.2012.09.001.

    Article  Google Scholar 

  47. Iqbal, A., Arshad, M., Hashmi, I., Karthikeyan, R., Gentry, T. J., & Schwab, A. P. (2018). Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa. Environmental Technology, 39(13), 1705–1714. https://doi.org/10.1080/09593330.2017.1337232.

    CAS  Article  Google Scholar 

  48. Jiang, Y., Lei, M., Duan, L. B., & Longhurst, P. (2015). Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass & Bioenergy, 83, 328–339. https://doi.org/10.1016/j.biombioe.2015.10.013.

    CAS  Article  Google Scholar 

  49. PubChem 2019 update: improved access to chemical data. (2019). https://www.nlm.nih.gov/toxnet/index.html.

  50. Kirchmann, H., Borjesson, G., Katterer, T., & Cohen, Y. (2017). From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio, 46(2), 143–154. https://doi.org/10.1007/s13280-016-0816-3.

    CAS  Article  Google Scholar 

  51. Kirk, J. L., Klironomos, J. N., Lee, H., & Trevors, J. T. (2005). The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 133(3), 455–465. https://doi.org/10.1016/j.envpol.2004.06.002.

    CAS  Article  Google Scholar 

  52. Kong, W., Zhu, Y., Liang, Y., Zhang, J., Smith, F., & Yang, M. (2007). Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution, 147(1), 187–193. https://doi.org/10.1016/j.envpol.2006.08.016.

    CAS  Article  Google Scholar 

  53. Kumar, S., Singh, R., Kumar, V., Rani, A., & Jain, R. (2017). Cannabis sativa: A plant suitable for phytoremediation and bioenergy production. In Phytoremediation potential of bioenergy plants. Singapore: Springer. https://doi.org/10.1007/978-981-10-3084-0_10.

  54. Latif, E., Wijeyesekera, D. C., Newport, D., & Tucker, S. (2010). Potential for research on hemp insulation in the UK construction sector. In Proceedings of Advances in Computing and Technology,(AC&T) The School of Computing and Technology 5th Annual Conference, University of East London, pp, 2010

  55. Li, S. Y., Stuart, J. D., Li, Y., & Parnas, R. S. (2010). The feasibility of converting Cannabis sativa L. oil into biodiesel. Bioresource Technology, 101(21), 8457–8460. https://doi.org/10.1016/j.biortech.2010.05.064.

    CAS  Article  Google Scholar 

  56. Lieder, M., & Rashid, A. (2016). Towards circular economy implementation: A comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36–51. https://doi.org/10.1016/j.jclepro.2015.12.042.

    Article  Google Scholar 

  57. Lin, H., Tao, S., Zuo, Q., & Coveney, R. (2007). Uptake of polycyclic aromatic hydrocarbons by maize plants. Environmental Pollution, 148(2), 614–619. https://doi.org/10.1016/j.envpol.2006.11.026.

    CAS  Article  Google Scholar 

  58. Linger, P., Müssig, J., Fischer, H., & Kobert, J. (2002). Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential. Industrial Crops and Products, 16(1), 33–42. https://doi.org/10.1016/S0926-6690(02)00005-5.

    CAS  Article  Google Scholar 

  59. Liste, H.-H., & Prutz, I. (2006). Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere, 62(9), 1411–1420. https://doi.org/10.1016/j.chemosphere.2005.05.018.

    CAS  Article  Google Scholar 

  60. Liu, C. F., Li, Y. H., & Shi, G. R. (2012). Utilize heavy metal-contaminated farmland to develop bioenergy. Advanced Materials Research, 414, 254–261. https://doi.org/10.4028/www.scientific.net/AMR.414.254.

    CAS  Article  Google Scholar 

  61. Macherius, A., Eggen, T., Lorenz, W., Moeder, M., Ondruschka, J., & Reemtsma, T. (2012). Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environmental Science & Technology, 46(19), 10797–10804. https://doi.org/10.1021/es3028378.

    CAS  Article  Google Scholar 

  62. Madalão, J. C., Pires, F. R., Cargnelutti Filho, A., Nascimento, A. F., Chagas, K., Procópio, S. O., et al. (2012). Selection of species tolerant to the herbicide sulfentrazone with potential for phytoremediation of contaminated soils. Semina: Ciências Agrárias, 33(6), 2199–2213. https://doi.org/10.5433/1679-0359.2012v33n6p2199.

    CAS  Article  Google Scholar 

  63. Manriquez-Altamirano, A., Sierra-Perez, J., Munoz, P., & Gabarrell, X. (2020). Analysis of urban agriculture solid waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139375.

    Article  Google Scholar 

  64. Marsik, P., Rezek, J., Židková, M., Kramulová, B., Tauchen, J., & Vaněk, T. (2017). Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere, 171, 97–105. https://doi.org/10.1016/j.chemosphere.2016.12.055.

    CAS  Article  Google Scholar 

  65. Martin, M., Svensson, N., Fonseca, J., & Eklund, M. (2014). Quantifying the environmental performance of integrated bioethanol and biogas production. Renewable Energy, 61, 109–116. https://doi.org/10.1016/j.renene.2012.09.058.

    Article  Google Scholar 

  66. Mattes, T. E., Ewald, J. M., Liang, Y., Martinez, A., Awad, A., Richards, P., et al. (2018). PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon. Environmental Science and Pollution Research, 25(17), 16376–16388. https://doi.org/10.1007/s11356-017-9872-x.

    CAS  Article  Google Scholar 

  67. Meers, E., Ruttens, A., Hopgood, M., Lesage, E., & Tack, F. M. G. (2005). Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 61(4), 561–572. https://doi.org/10.1016/j.chemosphere.2005.02.026.

    CAS  Article  Google Scholar 

  68. Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable & Sustainable Energy Reviews, 10(3), 248–268. https://doi.org/10.1016/j.rser.2004.09.002.

    CAS  Article  Google Scholar 

  69. Mihoc, M., Pop, G., Alexa, E., & Radulov, I. (2012). Nutritive quality of romanian hemp varieties (Cannabis sativa L.) with special focus on oil and metal contents of seeds. Chemistry Central Journal, 6(1), 122. https://doi.org/10.1186/1752-153X-6-122.

    CAS  Article  Google Scholar 

  70. Mordechay, B. E., Tarchitzky, J., Chen, Y., Shenker, M., & Chefetz, B. (2018). Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environmental Pollution, 232, 164–172. https://doi.org/10.1016/j.envpol.2017.09.029.

    CAS  Article  Google Scholar 

  71. Naithani, V., Tyagi, P., Jameel, H., Lucia, L. A., & Pal, L. (2020). Ecofriendly and innovative processing of hemp hurds fibers for tissue and towel paper. BioResources, 15(1), 706–720. https://doi.org/10.15376/biores.15.1.706-720.

    CAS  Article  Google Scholar 

  72. Nebert, D. W., Wikvall, K., & Miller, W. L. (2013). Human cytochromes P450 in health and disease. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 368(1612), 20120431–20120431. https://doi.org/10.1098/rstb.2012.0431.

    CAS  Article  Google Scholar 

  73. Panchenko, L., Muratova, A., & Turkovskaya, O. (2017). Comparison of the phytoremediation potentials of Medicago falcata L. and Medicago sativa L. in aged oil-sludge-contaminated soil. Environmental Science and Pollution Research, 24(3), 3117–3130. https://doi.org/10.1007/s11356-016-8025-y.

    CAS  Article  Google Scholar 

  74. Pavela, R. (2018). Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environmental Science and Pollution Research, 25(11), 10904–10910. https://doi.org/10.1007/s11356-018-1398-3.

    CAS  Article  Google Scholar 

  75. Pejic, B. M., Vukcevic, M. M., Pajic-Lijakovic, I. D., Lausevic, M. D., & Kostic, M. M. (2011). Mathematical modeling of heavy metal ions (Cd2+, Zn2+ and Pb2+) biosorption by chemically modified short hemp fibers. Chemical Engineering Journal, 172(1), 354–360. https://doi.org/10.1016/j.cej.2011.06.016.

    CAS  Article  Google Scholar 

  76. Peng, W., & Pivato, A. (2019). Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste and Biomass Valorization, 10(2), 465–481. https://doi.org/10.1007/s12649-017-0071-2.

    CAS  Article  Google Scholar 

  77. Phillips, P. J., Smith, S. G., Kolpin, D. W., Zaugg, S. D., Buxton, H. T., Furlong, E. T., et al. (2010). Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environmental Science & Technology, 44(13), 4910–4916. https://doi.org/10.1021/es100356f.

    CAS  Article  Google Scholar 

  78. Pietrini, F., Passatore, L., Patti, V., Francocci, F., Giovannozzi, A., & Zacchini, M. (2019). Morpho-physiological and metal accumulation responses of hemp plants (Cannabis Sativa L.) grown on soil from an agro-industrial contaminated area. Water, 11(4), 808.

    CAS  Article  Google Scholar 

  79. Prade, T., Svensson, S.-E., & Mattsson, J. E. (2012). Energy balances for biogas and solid biofuel production from industrial hemp. Biomass and Bioenergy, 40, 36–52. https://doi.org/10.1016/j.biombioe.2012.01.045.

    CAS  Article  Google Scholar 

  80. Praspaliauskas, M., Žaltauskaitė, J., Pedišius, N., & Striūgas, N. (2020). Comprehensive evaluation of sewage sludge and sewage sludge char soil amendment impact on the industrial hemp growth performance and heavy metal accumulation. Industrial Crops and Products, 150, 112396. https://doi.org/10.1016/j.indcrop.2020.112396.

    CAS  Article  Google Scholar 

  81. Rosi-Marshall, E. J., Snow, D., Bartelt-Hunt, S. L., Paspalof, A., & Tank, J. L. (2015). A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. Journal of Hazardous Materials, 282, 18–25. https://doi.org/10.1016/j.jhazmat.2014.06.062.

    CAS  Article  Google Scholar 

  82. Salentijn, E. M. J., Zhang, Q., Amaducci, S., Yang, M., & Trindade, L. M. (2015). New developments in fiber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products, 68, 32–41. https://doi.org/10.1016/j.indcrop.2014.08.011.

    Article  Google Scholar 

  83. Sauve, S., & Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal. https://doi.org/10.1186/1752-153x-8-15.

    Article  Google Scholar 

  84. Schettini, E., Santagata, G., Malinconico, M., Immirzi, B., Scarascia Mugnozza, G., & Vox, G. (2013). Recycled wastes of tomato and hemp fibres for biodegradable pots: Physico-chemical characterization and field performance. Resources, Conservation and Recycling, 70, 9–19. https://doi.org/10.1016/j.resconrec.2012.11.002.

    Article  Google Scholar 

  85. Scrucca, F., Ingrao, C., Maalouf, C., Moussa, T., Polidori, G., Messineo, A., et al. (2020). Energy and carbon footprint assessment of production of hemp hurds for application in buildings. Environmental Impact Assessment Review,. https://doi.org/10.1016/j.eiar.2020.106417.

    Article  Google Scholar 

  86. Shea, A., Lawrence, M., & Walker, P. (2012). Hygrothermal performance of an experimental hemp–lime building. Construction and Building Materials, 36, 270–275. https://doi.org/10.1016/j.conbuildmat.2012.04.123.

    Article  Google Scholar 

  87. Sjöström, A. E., Collins, C. D., Smith, S. R., & Shaw, G. (2008). Degradation and plant uptake of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four contrasting agricultural soils. Environmental Pollution, 156(3), 1284–1289. https://doi.org/10.1016/j.envpol.2008.03.005.

    CAS  Article  Google Scholar 

  88. Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033–1049. https://doi.org/10.1016/j.envint.2008.01.004.

    CAS  Article  Google Scholar 

  89. Staples, M. D., Malina, R., & Barrett, S. R. H. (2017). The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy, 2(2), 16202. https://doi.org/10.1038/nenergy.2016.202.

    CAS  Article  Google Scholar 

  90. Stonehouse, G. C., McCarron, B. J., Guignardi, Z. S., El Mehdawi, A. F., Lima, L. W., Fakra, S. C., et al. (2020). Selenium metabolism in hemp (Cannabis sativa L.)—potential for phytoremediation and biofortification. Environmental Science & Technology, 54(7), 4221–4230. https://doi.org/10.1021/acs.est.9b07747.

    CAS  Article  Google Scholar 

  91. Tai, Y., Tam, N.F.-Y., Ruan, W., Yang, Y., Yang, Y., Tao, R., et al. (2019). Specific metabolism related to sulfonamide tolerance and uptake in wetland plants. Chemosphere, 227, 496–504. https://doi.org/10.1016/j.chemosphere.2019.04.069.

    CAS  Article  Google Scholar 

  92. Tanoue, R., Sato, Y., Motoyama, M., Nakagawa, S., Shinohara, R., & Nomiyama, K. (2012). Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. Journal of Agricultural and Food Chemistry, 60(41), 10203–10211. https://doi.org/10.1021/jf303142t.

    CAS  Article  Google Scholar 

  93. Tofan, L., Teodosiu, C., Paduraru, C., & Wenkert, R. (2013). Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies. Applied Surface Science, 285, 33–39. https://doi.org/10.1016/j.apsusc.2013.06.151.

    CAS  Article  Google Scholar 

  94. Trapp, S. (2004). Plant uptake and transport models for neutral and ionic chemicals. Environmental Science and Pollution Research, 11(1), 33. https://doi.org/10.1065/espr2003.08.169.

    CAS  Article  Google Scholar 

  95. Yan, D., Ma, W., Song, X., & Bao, Y. (2017). The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil. Environmental Science and Pollution Research, 24(8), 7544–7554. https://doi.org/10.1007/s11356-017-8368-z.

    CAS  Article  Google Scholar 

  96. Yang, R., Su, M. X., Li, M., Zhang, J. C., Hao, X. M., & Zhang, H. (2010). One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation. Bioresource Technology, 101(24), 9829–9829. https://doi.org/10.1016/j.biortech.2010.02.095.

    CAS  Article  Google Scholar 

Download references

Funding

This work is supported by the USDA National Institute of Food and Agriculture through grant No. 2020-38422-32253 to California State Polytechnic University Pomona (Cal Poly Pomona). This work is also supported by the USDA National Institute of Food and Agriculture through grant No. 2018-68002-27920 to Florida A&M University and the National Science Foundation through grant No. 1735235 as part of the National Science Foundation Research Traineeship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simeng Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Trejo, H.X., Chen, G. et al. Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01289-0

Download citation

Keywords

  • Phytoremediation
  • Industrial hemp
  • Cannabis sativa L.
  • Green liver model
  • Contaminant of emerging concern
  • Circular economy