Snow cover and vegetation greenness with leaf water content control the global land surface temperature

Abstract

The land surface temperature (LST) and land use land cover (LULC) are the major components of climate- and environment-related studies. The objective of this study was to assess the relationship of LST with remotely sensed LULC-derived vegetation indices during 2018 at the global, latitudinal and continental scales. Moderate resolution imaging spectroradiometer (MODIS) Aqua daytime LST and eight LULC MODIS indices (NDVI, EVI, LAI, DSI, NDWI, albedo, NDSI, NDBI) were processed using Earth Engine Code Editor. The analysis was conducted using correlation coefficient and significance of the relationship of variables based on 2050 randomly selected points at the global scale. Based on the univariate and geographically weighted regression methods, the research confirmed that vegetation greenness (NDVI), leaf water content (NDWI) and snow cover (DSI) are the codominant drivers of decreasing LST at the global scale including Europe, Asia, South America and North America at the continental scale. Snow cover during winter and vegetation greenness in summer seasons control the global LST. Although albedo shows an inverse relationship, NDBI and NDSI displayed a positive relationship to LST at the global scale. In conclusion, temporal seasonal and inter-annual dynamics of LST in response to snow cover and vegetation properties (greenness, moisture) should be focused on understanding and regulating LST at varying scales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aleksandrowicz, O., Vuckovic, M., Kiesel, K., & Mahdavi, A. (2017). Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 21, 1–26.

    Article  Google Scholar 

  2. Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area Iran. Remote sensing of environment, 113(12), 2606–2617.

    Article  Google Scholar 

  3. Appel, M., Lahn, F., Buytaert, W., & Pebesma, E. (2018). Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 47–56. https://doi.org/10.1016/j.isprsjprs.2018.01.014.

    Article  Google Scholar 

  4. Bajaj, D. N., Inamdar, A. B., & Vaibhav, V. (2012). Temporal variation of Urban Heat Island using Landsat data: a case study of Ahmedabad, India. In 33rd Asian Conference on Remote Sensing 2012, ACRS-2012 (pp. 797–804). Asian Association on Remote Sensing.

  5. Baker, L. A., Brazel, A. J., Selover, N., Martin, C., McIntyre, N., Steiner, F. R., et al. (2002). Urbanization and warming of Phoenix (Arizona, USA): Impacts, feedbacks and mitigation. Urban ecosystems, 6(3), 183–203.

    Article  Google Scholar 

  6. Basha, G., Marpu, P. R., & Ouarda, T. B. (2015). Tropospheric temperature climatology and trends observed over the Middle East. Journal of Atmospheric and Solar-Terrestrial Physics, 133, 79–86.

    Article  Google Scholar 

  7. Bernales, A. M., Antolihao, J. A., Samonte, C., Campomanes, F., Rojas, R. J., & Silapan, J. (2016). Modelling the relationship between land surface temperature and landscape patterns of land use land cover classification using multi linear regression models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 851–856.

    Article  Google Scholar 

  8. Bharath, S., Rajan, K. S., & Ramachandra, T. V. (2013). Land surface temperature responses to land use land cover dynamics. Geoinfor Geostat: An Overview, 54, 50–78.

    Google Scholar 

  9. Boles, S. H., Xiao, X., Liu, J., Zhang, Q., Munkhtuya, S., Chen, S., & Ojima, D. (2004). Land cover characterization of temperate east Asia using multi-temporal vegetation sensor data. Remote Sensing of Environment, 90(4), 477–489.

    Article  Google Scholar 

  10. Bonafoni, S., Baldinelli, G., Rotili, A., & Verducci, P. (2017). Albedo and surface temperature relation in urban areas: Analysis with different sensors. In 2017 Joint Urban Remote Sensing Event (JURSE) (pp. 1–4). Presented at the 2017 Joint Urban Remote Sensing Event (JURSE). https://doi.org/https://doi.org/10.1109/JURSE.2017.7924612

  11. Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical analysis, 28(4), 281–298.

    Article  Google Scholar 

  12. Cetin, M. (2019). The effect of urban planning on urban formations determining bioclimatic comfort area’s effect using satellitia imagines on air quality: A case study of Bursa city. Air Quality, Atmosphere & Health, 12(10), 1237–1249.

    CAS  Article  Google Scholar 

  13. Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote sensing of environment, 104(2), 133–146.

    Article  Google Scholar 

  14. Chen, L., Li, M., Huang, F., & Xu, S. (2013). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. In 2013 6th International Congress on Image and Signal Processing (CISP) (Vol. 2, pp. 840–845). Presented at the 2013 6th International Congress on Image and Signal Processing (CISP). https://doi.org/https://doi.org/10.1109/CISP.2013.6745282

  15. Clinton, N., & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment, 134, 294–304.

    Article  Google Scholar 

  16. Creutzburg, M. (2013). Leaf Area Index. https://wiki.landscapetoolbox.org/. https://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:leaf-area_index. Accessed 7 May 2020

  17. Didan, K. (2015). MYD13A1 MODIS/Aqua Vegetation Indices 16-day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/https://doi.org/10.5067/MODIS/MYD13A1.006. Accessed 28 December 2019

  18. Eugster, W., Rouse, W. R., Pielke, R. A. Sr., Mcfadden, J. P., Baldocchi, D. D., Kittel, T. G. F., et al. (2000). Land–atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate. Global Change Biology, 6(S1), 84–115.

    Article  Google Scholar 

  19. Fadli, A. H., Kosugo, A., Ichii, K., & Ramli, R. (2019). Satellite-based monitoring of forest cover change in indonesia using google earth engine from 2000 to 2016. In Journal of Physics: Conference Series (Vol. 1317, p. 012046). IOP Publishing.

  20. Farhadi, H., Faizi, M., & Sanaieian, H. (2019). Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 46, 101448.

    Article  Google Scholar 

  21. Feng, Y., Gao, C., Tong, X., Chen, S., Lei, Z., & Wang, J. (2019). Spatial patterns of land surface temperature and their influencing factors: A case study in Suzhou, China. Remote Sensing, 11(2), 182.

    Article  Google Scholar 

  22. Feng, Y., Li, H., Tong, X., Chen, L., & Liu, Y. (2018). Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China. Global and Planetary Change, 167, 24–34.

    Article  Google Scholar 

  23. Gao, B.-C. (1995). Normalized difference water index for remote sensing of vegetation liquid water from space. In Imaging Spectrometry (Vol. 2480, pp. 225–236). International Society for Optics and Photonics.

  24. gisresources. (2014, April 13). Why does NDVI, NDBI, NDWI Ranges From -1 to 1? GIS Resources. http://www.gisresources.com/ndvi-ndbi-ndwi-ranges-1-1/. Accessed 7 May 2020

  25. Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over Eastern India. Scientific reports, 9(1), 1–10.

    Article  CAS  Google Scholar 

  26. Google. (2018). MODIS Aqua Daily NDWI. Google Developers. https://developers.google.com/earth-engine/datasets/catalog/MODIS_MYD09GA_006_NDWI. Accessed 28 December 2019

  27. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.

    Article  Google Scholar 

  28. Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical research letters, 34(6).

  29. Hall, D. K., & G. A., R. (2016). MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. NASA National Snow and Ice Data Center. https://doi.org/https://doi.org/10.5067/MODIS/MOD10A1.006. Accessed 28 December 2019

  30. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.

  31. Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), 117–124.

    Article  Google Scholar 

  32. Hidayati, I. N., Suharyadi, R., & Danoedoro, P. (2018). Developing an Extraction Method of Urban Built-Up Area Based on Remote Sensing Imagery Transformation Index. In Forum Geografi (Vol. 32, pp. 96–108).

  33. Ichii, K., Kawabata, A., & Yamaguchi, Y. (2002). Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. International journal of remote sensing, 23(18), 3873–3878.

    Article  Google Scholar 

  34. Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., et al. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482.

    Article  Google Scholar 

  35. Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006.

    Article  Google Scholar 

  36. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528.

    CAS  Article  Google Scholar 

  37. Karakuş, C. B. (2019). The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island. Asia-Pacific Journal of Atmospheric Sciences, 55(4), 669–684. https://doi.org/10.1007/s13143-019-00109-w.

    Article  Google Scholar 

  38. Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., et al. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate, 23(3), 618–633.

    Article  Google Scholar 

  39. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., et al. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14–37.

    Article  Google Scholar 

  40. Liang, Shouzhen, & Shi, P. (2009). Analysis of the relationship between urban heat island and vegetation cover through Landsat ETM+: A case study of Shenyang. In 2009 Joint Urban Remote Sensing Event (pp. 1–5). IEEE.

  41. Liang, Shunlin, & Wang, J. (2019). Advanced remote sensing: terrestrial information extraction and applications. Academic Press.

  42. Malik, M. S., Shukla, J. P., & Mishra, S. (2019). Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India. IJMS Vol.48(01) [January 2019]. http://nopr.niscair.res.in/handle/123456789/45657. Accessed 31 December 2019

  43. Muster, S., Langer, M., Abnizova, A., Young, K. L., & Boike, J. (2015). Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sensing of Environment, 168, 1–12.

    Article  Google Scholar 

  44. Myneni, R., Y., K., & T., P. (2015). MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD15A3H.006. Accessed 28 December 2019

  45. Nill, L., Ullmann, T., Kneisel, C., Sobiech-Wolf, J., & Baumhauer, R. (2019). Assessing spatiotemporal variations of landsat land surface temperature and multispectral Iindices in the arctic Mackenzie delta region between 1985 and 2018. Remote Sensing, 11(19), 2329.

    Article  Google Scholar 

  46. nsidc. (2020). What is NDSI snow cover and how does it compare to FSC? nsidc.org. https://nsidc.org/support/faq/what-ndsi-snow-cover-and-how-does-it-compare-fsc. Accessed 7 May 2020

  47. Oke, T. R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 324(1223), 335–349.

    Article  Google Scholar 

  48. Pal, S., & Ziaul, S. K. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145.

    Article  Google Scholar 

  49. Parvez, I. M., Aina, Y. A., & Balogun, A.-L. (2019). The influence of urban form on the spatiotemporal variations in land surface temperature in an arid coastal city. Geocarto International, 1–20.

  50. Qin, Z., & Karnieli, A. (1999). Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. International journal of remote sensing, 20(12), 2367–2393.

    Article  Google Scholar 

  51. Rasul, A. O. (2016). Remote sensing of surface urban cool and heat island dynamics in Erbil, Iraq, between 1992 and 2013 (Ph.D.). University of Leicester. Retrieved from http://hdl.handle.net/2381/38508

  52. Rasul, A., Balzter, H., & Smith, C. (2015). Spatial variation of the daytime surface urban cool island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban climate, 14, 176–186.

    Article  Google Scholar 

  53. Rasul, A., Balzter, H., & Smith, C. (2017). Applying a normalized ratio scale technique to assess influences of urban expansion on land surface temperature of the semi-arid city of Erbil. International journal of remote sensing, 38(13), 3960–3980.

    Article  Google Scholar 

  54. Rasul, A., Ibrahim, S., Onojeghuo, A. R., & Balzter, H. (2020). A trend analysis of leaf area index and land surface temperature and their relationship from global to local scale. Land, 9(10), 388.

    Article  Google Scholar 

  55. Raynolds, M. K., Comiso, J. C., Walker, D. A., & Verbyla, D. (2008). Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment, 112(4), 1884–1894.

    Article  Google Scholar 

  56. Rogers, A. S., & Kearney, M. S. (2004). Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. International Journal of Remote Sensing, 25(12), 2317–2335.

    Article  Google Scholar 

  57. Salomonson, V. V., & Appel, I. (2004). Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote sensing of environment, 89(3), 351–360.

    Article  Google Scholar 

  58. Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240.

    Article  Google Scholar 

  59. Schaaf, C., & Wang, Z. (2015). MCD43A3 MODIS/terra+aqua BRDF/albedo daily L3 global - 500m V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD43A3.006.

    Article  Google Scholar 

  60. Schultz, P. A., & Halpert, M. S. (1993). Global correlation of temperature, NDVI and precipitation. Advances in Space Research, 13(5), 277–280.

    Article  Google Scholar 

  61. Schwarz, N., Schlink, U., Franck, U., & Großmann, K. (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecological Indicators, 18, 693–704.

    Article  Google Scholar 

  62. sentinel-hub. (2019). EVI (Enhanced Vegetation Index). https://www.sentinel-hub.com/eoproducts/evi-enhanced-vegetation-index-0. Accessed 7 May 2020

  63. sentinel-hub. (2018). NDVI (Normalized Difference Vegetation Index). sentinel-hub.com. https://www.sentinel-hub.com/eoproducts/ndvi-normalized-difference-vegetation-index. Accessed 7 May 2020

  64. Sobrino, J. A., & Irakulis, I. (2020). A methodology for comparing the surface urban heat island in selected urban agglomerations around the world from sentinel-3 SLSTR data. Remote Sensing, 12(12), 2052. https://doi.org/10.3390/rs12122052.

    Article  Google Scholar 

  65. Sumida, A., Watanabe, T., & Miyaura, T. (2018). Interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions. Scientific Reports, 8(1), 13590.

    Article  CAS  Google Scholar 

  66. Thorne, P. W., Lanzante, J. R., Peterson, T. C., Seidel, D. J., & Shine, K. P. (2011). Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 66–88.

    Google Scholar 

  67. Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132.

    Article  Google Scholar 

  68. Trenberth, K. E. (2004). Climatology (communication arising): rural land-use change and climate. Nature, 427(6971), 213.

    CAS  Article  Google Scholar 

  69. Wan, Z., Hook, S., & Hulley, G. (2015). MYD11A2 MODIS/Aqua land surface temperature/emissivity 8-Day L3 global 1km SIN grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD11A2.006.

    Article  Google Scholar 

  70. Wang, Y.-C., Hu, B. K., Myint, S. W., Feng, C.-C., Chow, W. T., & Passy, P. F. (2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of the Total Environment, 643, 738–750.

    CAS  Article  Google Scholar 

  71. Weng, Q., Fu, P., & Gao, F. (2014). Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of Environment, 145, 55–67.

    Article  Google Scholar 

  72. Xiao, X., Boles, S., Liu, J., Zhuang, D., & Liu, M. (2002). Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sensing of Environment, 82(2–3), 335–348.

    Article  Google Scholar 

  73. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Article  Google Scholar 

  74. Zhang, Z., Ji, M., Shu, J., Deng, Z., & Wu, Y. (2008). Surface urban heat island in Shanghai, China: Examining the relationship between land surface temperature and impervious surface fractions derived from Landsat ETM + imagery . Int Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 37, 601–606.

    Google Scholar 

  75. Zhang, Y., Odeh, I. O. A., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256–264. https://doi.org/10.1016/j.jag.2009.03.001.

    Article  Google Scholar 

  76. Zhou, X., & Wang, Y.-C. (2011). Dynamics of land surface temperature in response to land-use/cover change. Geographical Research, 49(1), 23–36.

    Article  Google Scholar 

Download references

Acknowledgements

Datasets for this research are included in this paper: Wan et al. (2015), Myneni et al. (2015), Schaaf and Wang (2015), and Didan (2015). These data are available in Google Earth Engine (Google, 2018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Azad Rasul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Fig. 

Fig. 6
figure6

Relationship between average LST of Africa during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

6

Appendix 2

See Fig. 

Fig. 7
figure7

Relationship between average LST of Asia during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

7

Appendix 3

See Fig. 

Fig. 8
figure8

Relationship between average LST of Europe during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

8

Appendix 4

See Fig. 

Fig. 9
figure9

Relationship between average LST of Australia during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

9

Appendix 5

See Fig. 

Fig. 10
figure10

Relationship between average LST of North America during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

10

Appendix 6

See Fig. 

Fig. 11
figure11

Relationship between average LST of South America during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

11

Appendix 7

See Fig. 

Fig. 12
figure12

Relationship between average LST of Central America during 2018 and albedo (a), LAI (b), EVI (c), NDVI (d), NDBI (e), NDSI (f), NDWI (g), DSI (h)

12

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasul, A., Ningthoujam, R. Snow cover and vegetation greenness with leaf water content control the global land surface temperature. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01269-4

Download citation

Keywords

  • Google Earth Engine
  • Global LST
  • Land surface temperature
  • Land use land cover
  • MODIS
  • Vegetation indices