The geomorphology and ecosystem service economic value baselines of tributary watersheds in Malaysia

Abstract

This study presents how a cluster of tributary watersheds was evaluated for geomorphology and ecosystem service economic value baselines. Tributary watersheds, although small, were focused herein as they are practical for community-based conservation. Based on the Market-Price Method, the watersheds were estimated to be worth USD49.59 ha−1 year−1 at the time of this study and USD58.13 ha−1 year−1 in 2026. The watersheds were able to meet water demand of 20.94 megalitre day−1 required by the 93,084 local populations during the worst-case scenario induced by a peak El Niño and Southern Oscillation event in 2016. Collectively, the watersheds were contributing 703.87 megalitre day−1; thus, water shortages are not expected in near future, unless if they are compromised. The data acquired are also compared with studies elsewhere, and some insights on other baseline metrics, risk factors and humanizing watershed conservation are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: Adapted from MNRE (2011) and data collected by the authors in 2016

Fig. 5

Source: Combined data from McIntosh (2014), SPAN (2016) and PUB (2017)

Fig. 6
Fig. 7

Source Department of Irrigation and Drainage (2017)

References

  1. Abdul Rahim, N. (1998). Water yield changes after forest conversion to agricultural landuse in Peninsular Malaysia. Journal of Tropical Forest Science, 1, 67–84.

    Google Scholar 

  2. Abdullah, K. (2002). Integrated river basin management. In N. W. Chan (Ed.), Rivers: Towards sustainable development. Penang: Penerbit Universiti Sains Malaysia.

    Google Scholar 

  3. Akasah, Z. A., & Doraisamy, S. V. (2015). Malaysia flood: Impacts and factors contributing towards the restoration of damages. Journal of Scientific Research and Development, 2(14), 53–59.

    Google Scholar 

  4. Al-Saud, M. (2009). Morphometric analysis of Wadi Aurnah drainage system, Western Arabian Peninsula. The Open Hydrology Journal, 3, 1–10.

    Google Scholar 

  5. Anderson, D. L., Ames, D. P., & Yang, P. (2014). Quantitative methods for comparing different polyline stream network models. Journal of Geographic Information System, 6, 88–98.

    Article  Google Scholar 

  6. Angeli, M. G., Pasuto, A., & Silvano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55(3), 133–147.

    Article  Google Scholar 

  7. Austin, D., Cerman, G., Heywood, T., Marshall, R., Refling, K., & Van Patter, L. (2010). Valuing natural capital and ecosystem services. Ontario, Canada: Muskoka Watershed Council.

    Google Scholar 

  8. Balint, P. J. (2006). Improving community-based conservation near protected areas: the importance of development variables. Environmental Management, 38(1), 137–148.

    Article  Google Scholar 

  9. Barnard, P. L., Owen, L. A., Sharma, M. C., & Finkel, R. C. (2001). Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology, 40, 21–35.

    Article  Google Scholar 

  10. Barnston, A. G., Chelliah, M., & Goldenberg, S. B. (1997). Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmosphere-Ocean, 35, 367–383.

    Article  Google Scholar 

  11. Barton, D. N., Traaholt, N. V., & Blumentrath, S. (2015). Materials and methods appendix for valuation of ecosystem services of green infrastructure in Oslo. Oslo: Norwegian Institute for Nature Research.

    Google Scholar 

  12. Bhatta, L. D., Khadgi, A., Rai, R. K., Tamang, B., Timalsina, K., & Wahid, S. (2017). Designing community-based payment scheme for ecosystem services: a case from Koshi Hills, Nepal. Environment, Development and Sustainability, 20(4), 1831–1848.

    Article  Google Scholar 

  13. Bello, I. E., Adzandeh, A., & Rilwani, M. L. (2014). Geoinformatics characterisation of drainage systems within Muya watershed in the Upper Niger Drainage Basin, Nigeria. International Journal of Research in Earth and Environmental Sciences, 2(3), 18–36.

    Google Scholar 

  14. Biswas, R., & Chakraborty, S. (2016). Watershed prioritization based on geo-morphometry and land use parameters—An approach to watershed development using remote sensing and GIS, Neora watershed, Darjeeling and Jalpaiguri Districts, West Bengal, India. IOSR Journal of Applied Geology and Geophysics, 4, 2321–2990.

    Google Scholar 

  15. Brass, R. (1990). Hydrology: An introduction to hydrologic science. Reading: Addison-Wesley.

    Google Scholar 

  16. Brodie, R., Sundaram, B., Tottenham, R., Hostetler, S., & Ransley, T. (2007). An overview of tools for assessing groundwater–surface water connectivity. Canberra: Bureau of Rural Sciences, Australian Government.

    Google Scholar 

  17. Caumon, G., Collon-Drouaillet, P., Carlier, Le., de Veslud, C., Sausse, J., & Visuer, S. (2009). Teacher’s aide: 3D modelling of geological structures. Mathematical Geosciences, 41(9), 927–945.

    CAS  Article  Google Scholar 

  18. Chan, N. W. (2004). A critical review of malaysia’s accomplishment on water resources management under AGENDA 21. Malaysian Journal of Environmental Management, 5, 55–78.

    Google Scholar 

  19. Chan, N. W. (2005). Sustainable management of rivers in Malaysia: Involving all stakeholders. International Journal of River Basin Management, 3(3), 147–162.

    Article  Google Scholar 

  20. Chan, N. W. (2009). Issues and challenges in water governance in Malaysia. Journal of Environmental Health Science and Engineering, 6(3), 143–152.

    Google Scholar 

  21. Chang, C. L., Lo, S. L., & Huang, S. M. (2009). Optimal strategies for best management practice placement in a synthetic watershed. Environmental Monitoring and Assessment, 153(1–4), 359–364.

    CAS  Article  Google Scholar 

  22. Chen, H., & Lee, C. F. (2003). A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 51, 269–288.

    Article  Google Scholar 

  23. Chimeli, A. B., Boyd, R. G., & Adams, D. M. (2011). International timber markets and tropical deforestation: the evidence from prices. Applied Economics, 44(10), 1303–1314.

    Article  Google Scholar 

  24. Chorley, R. J., Schumm, S. A., & Sugden, D. E. (1984). Geomorphology. London: Methuen.

    Google Scholar 

  25. Clarke, J. I. (1966). Morphometry from maps. New York: Elsevier.

    Google Scholar 

  26. Costanza, R., Wilson, M., Troy, A., Voinov, A., Liu, S., & D’Agostino, J. (2006). The value of New Jersey’s ecosystem services and natural capital. Vermont: Gund Institute for Ecological Economics.

    Google Scholar 

  27. Davenport, M. A., Leahy, J. E., Anderson, D. H., & Jakes, P. J. (2007). Building trust in natural resource management within local communities: A case study of the Midewin National Tallgrass Prairie. Environmental Management, 39, 353–368.

    Article  Google Scholar 

  28. Department of Irrigation and Drainage, Malaysia. (2017). Online hydrological data. http://infobanjir.water.gov.my/real_time.cfm. Accessed 3 January 2017.

  29. Department of Statistics, Malaysia. (2010). Population and housing census of Malaysia 2010. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=117&bul_id=MDMxdHZjWTk1SjFzTzNkRXYzcVZjdz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09. Accessed 3 January 2017.

  30. Department of Statistics, Malaysia. (2020). Current population estimates 2018–2019. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UedKcUZpT2tVT090Snpydz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09. Accessed 27 December 2020.

  31. Dikpal, R. L., Renuka Prasad, T. J., & Satish, K. (2017). Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnatakam India. Applied Water Science, 7(8), 4399–4414.

    Article  Google Scholar 

  32. Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147.

    Article  Google Scholar 

  33. Dunne, T., & Leopold, L. (1978). Water in environmental planning. San Francisco: W.H. Freeman.

    Google Scholar 

  34. Eagleson, P. S. (1970). Dynamic hydrology. USA: McGraw-Hill.

    Google Scholar 

  35. Elosegi, A., & Sabater, S. (2013). Effects of hydromorphological impacts on river ecosystem functioning: A review and suggestions for assessing ecological impacts. Hydrobiologia, 712, 129–143.

    Article  Google Scholar 

  36. Environment Protection Agency, US. (2016). Water: Monitoring and assessment. https://archive.epa.gov/water/archive/web/html/vms51.html. Accessed 14 March 2017.

  37. Everard, M., & Quinn, N. (2015). Realizing the value of fluvial geomorphology. International Journal of River Basin Management, 13(4), 487–500.

    Article  Google Scholar 

  38. Ewing, J., & Domondon, K. (2016). Drought, pollution and Johor’s growing water needs. Singapore: ISEAS—Yusof Ishak Institute.

    Google Scholar 

  39. França da Silva, J., Santos, L., & Oka-Fiori, C. (2019). Spatial correlation analysis between topographic parameters for defining the geomorphometric diversity index: application in the environmental protection area of the Serra da Esperança (state of Paraná, Brazil). Environmental Earth Sciences, 78, 356.

    Article  Google Scholar 

  40. Feng, Y., Luo, G., Lu, L., Zhou, D., Han, Q., Wenqiang, X., et al. (2011). Effects of land use change on landscape pattern of the Manas River watershed in Xinjiang. China. Environmental Earth Sciences, 64(8), 2067–2077.

    Article  Google Scholar 

  41. Feng, D., Wu, W., Liang, L., Li, L., & Zhao, G. (2018). Payments for watershed ecosystem services: mechanism, progress and challenges. Ecosystem Health and Sustainability, 4(1), 13–28.

    Article  Google Scholar 

  42. Florinsky, I. V. (2017). An illustrated introduction to general geomorphometry. Progress in Physical Geography: Earth and Environment, 41(6), 723–752.

    Article  Google Scholar 

  43. Flotemersch, J. E., Leibowitz, S. G., Hill, R. A., Stoddard, J. L., Thoms, M. C., & Tharme, R. E. (2016). A watershed integrity definition and assessment approach to support strategic management of watersheds. River Research and Applications, 32(7), 1654–1671.

    Article  Google Scholar 

  44. Ghazoul, J. (2007). Placing humans at the heart of conservation. Biotropica, 39, 565–566.

    Article  Google Scholar 

  45. Hamzah, H. (2013). The Orang Asli customary land: issues and challenges. Journal of Administrative Science, 10(1). http://jas.uitm.edu.my/images/2013_JUNE/4.pdf. Accessed 21 May 2017.

  46. Hill, B. H., Kolka, R. K., McCormick, F. H., & Starry, M. A. (2014). A synoptic survey of ecosystem services from headwater catchments in the United States. Ecosystem Services, 7, 106–115.

    Article  Google Scholar 

  47. Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350.

    Article  Google Scholar 

  48. Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  49. Hynes, H. B. N. (1975). The stream and its valley. Verbandlungen Internationale Vereinigung fur Theoretische and Augewendie Limnologie, 19, 1–15.

    Google Scholar 

  50. Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., et al. (2016). Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, 6, 33130.

    Article  CAS  Google Scholar 

  51. Johnson, R. H. (1980). Hillslope stability and landslide hazard—A case study from Longdendale, north Derbyshire, England. Proceedings of the Geologists’ Association, 91(4), 315–325.

    Article  Google Scholar 

  52. Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides: A review. Bulletin de la Société Géologique de France, 2, 101–112.

    Article  Google Scholar 

  53. Juneng, L., & Tangang, F. T. (2008). Level and source of predictability of seasonal rainfall anomalies in Malaysia using canonical correlation analysis. International Journal of Climatology, 28, 1255–1267.

    Article  Google Scholar 

  54. Kallis, G., Gomez-Baggethun, E., & Zografos, C. (2013). To value or not to value? That is not the question. Ecological Economics, 94, 97–105.

    Article  Google Scholar 

  55. Kamarudzaman, A. N., Voon, K. F., Aziz, R. A., & Jalil, M. F. A. (2011). Study of point and non point sources pollution—A case study of Timah Tasoh lake in Perlis, Malaysia. International Conference on Environmental and Computer Science, 19, 84–88.

    Google Scholar 

  56. Khalid, M. S., & Shafiai, S. (2015). Flood disaster management in Malaysia: An evaluation of the effectiveness flood delivery system. International Journal of Social Science and Humanity, 5(4), 398–402.

    Article  Google Scholar 

  57. Khalik, W. A. W. M., Abdullah, M. P., Amerudin, N. A., & Padli, N. (2013). Physicochemical analysis on water quality status of Bertam River in Cameron Highlands, Malaysia. Journal of Materials and Environmental Science, 4(4), 488–495.

    Google Scholar 

  58. Khor, C. H., & Lee, S. C. (1993). Crash program solves Melaka’s water problem, In: Asian water and sewage: Malaysia Focus. From http://www.acssb.com.my/acssb/pdf/Publication-3.pdf. Accessed 21 March 2017.

  59. Kousky, V. E., & Higgins, R. W. (2007). An alert classification system for monitoring and assessing the ENSO cycle. Weather Forecast, 22, 353–371.

    Article  Google Scholar 

  60. Luck, G. W., Chan, K. M. A., & Fay, J. P. (2009). Protecting ecosystem services and biodiversity in the world’s watersheds. Conservation Letters, 2(4), 179–188.

    Article  Google Scholar 

  61. Malek, M. A., Nor, M. A. M., & Leong, Y. P. (2013). Water security and its challenges for Malaysia. Earth and Environmental Science, 16, 1–4.

    Google Scholar 

  62. McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., & Wittenberg, A. T. (2013). Inferred changes in El Nino-Southern oscillation variance over the past six centuries. Climate of the Past, 9, 2269–2284.

    Article  Google Scholar 

  63. McIntosh, A. C. (2014). Urban water supply and sanitation in Southeast Asia: A guide to good practice. Philippines: Asian Development Bank.

    Google Scholar 

  64. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington DC: Island Press.

    Google Scholar 

  65. Miller, V. C. (1953). A Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area, Virginia and Tennessee. New York: Columbia University.

    Google Scholar 

  66. Ministry of Natural Resources and Environment, Malaysia. (2011). The review of National Water Resource Study (2000–2050) and formulation of national water resources policy: Volume 13, Perak, Final Report. https://www.water.gov.my. Accessed 26 May 2016.

  67. Morton, L. W., & Padgitt, S. (2005). Selecting socio-economic metrics for watershed management. Environmental Monitoring and Assessment, 103(1–3), 83–98. https://doi.org/10.1007/s10661-005-6855-z.

    Article  Google Scholar 

  68. Natural Oceanic and Atmospheric Administration, US. (2015). Historical El Niño/La Nina episodes. http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_ v5.php. Accessed 13 Nov 2015

  69. NEPcon. (2016). Supply chain of Malaysian timber and wood-based industries. Kuala Lumpur: WWF-Malaysia and Malaysian Wood Industries Association (MWIA).

  70. Ng, C. K. C., Goh, C. H., Lin, J. C., Tan, M. S., Bong, W., Yong, C. S., et al. (2018). Water quality variation during a strong El Nino event in 2016: A case study in Kampar River. Malaysia. Environmental Monitoring and Assessment, 190, 402.

    Article  CAS  Google Scholar 

  71. Ng, C. K. C., Ooi, P. A. C., Wong, W. L., & Khoo, G. (2019). Adaptation of an assessment system for establishing a River Physical Quality Index and testing its effectiveness with fish-based metrics in Malaysia. River Research and Applications. https://doi.org/10.1002/rra.3528.

    Article  Google Scholar 

  72. Nilsson, C., Jansson, R., Malmqvist, B., & Naiman, R. J. (2007). Restoring riverine landscapes: The challenge of identifying priorities, reference states, and techniques. Ecology and Society. https://doi.org/10.5751/ES-02030-120116.

    Article  Google Scholar 

  73. Oksel, O., Razali, N., Yusoff, M. K., Ismail, M. Z., Paee, K. F., & Ibrahim, K. N. (2009). The impacts of integrated farming to water quality: Case study on Langgas River, Kunak, Sabah, Malaysia. International Journal of Engineering and Technology, 9(9), 55–58.

    Google Scholar 

  74. Pagella, F., & Sinclair, F. (2014). Development and use of a typology of mapping tools to assess their fitness for supporting management of ecosystem service provision. Landscape Ecology, 29, 383–399.

    Article  Google Scholar 

  75. Pagiola, S., Rios, R. S., & Arcenas, A. (2008). Can the poor participate in payments for environmental services? Lessons form the Silvopastoral Project in Nicaragua. Environment and Development Economics, 13, 299–325.

    Article  Google Scholar 

  76. Prasetyo, Y., & Nabilah, F. (2017). Pattern analysis of El Nino and La Nina phenomenon based on sea surface temperature (SST) and rainfall intensity using oceanic Nino Index (ONI) in West Java Area. Earth and Environmental Science, 98, 012041.

    Google Scholar 

  77. Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12, 941–952.

    Article  Google Scholar 

  78. Perak Water Board. (2013). Annual Report 2013. http://www.lap.com.my/bi/images/pdf/annual_report_2013.pdf. Accessed 26 June 2016.

  79. Perak Water Board. (2016). Tariff calculation 2016. http://www.lap.com.my/bi/index.php/community1/informasi-umum/kiraan-tarif. Accessed 26 June 2016.

  80. Poole, G. C. (2002). Fluvial landscape ecology: Addressing uniqueness within the river discontinuum. Freshwater Biology, 47(4), 641–660.

    Article  Google Scholar 

  81. Porras, I., Grieg-Gran, M., & Neves, N. (2008). All that glitters: A review of payments for watershed services in developing countries. London: International Institute for Environment and Development.

    Google Scholar 

  82. Postle, S. L., & Barton, H. T. (2005). Watershed protection: Capturing the benefits of nature’s water supply services. Natural Resources Forum, 29, 98–108.

    Article  Google Scholar 

  83. Public Utilities Board, Singapore. (2017). Water Price. Retrieved from https://www.pub.gov.sg/watersupply/waterprice. Accessed 3 June 2017.

  84. Public Utilities Board, Singapore. (2018). NEWater. https://www.pub.gov.sg/watersupply/fournationaltaps/newater. Accessed 6 May 2018.

  85. Raghunath, H. M. (2006). Hydrology principles, analysis and design. New Delhi: New Age International.

    Google Scholar 

  86. Rembold, F., Leo, O., Nègre, T., & Hubbard, N. (2015). The 2015–2016 El Niño event: Expected impact on food security and main response scenarios in East and Southern Africa (p. 27653). EUR: European Union.

    Google Scholar 

  87. Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process geomorphology. New York: McGraw Hill.

    Google Scholar 

  88. Robertson, M. (2012). Measurement and alienation: Making a world of ecosystem services. Transactions of the Institute of British Geographers, 37, 386–401.

    Article  Google Scholar 

  89. Rodríguez-Iturbe, I., & Valdés, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15(6), 1409–1420.

    Article  Google Scholar 

  90. Rohani, M. (2013). Freshwater values framework: a review of water valuation methods utilised within total economic valuation. Auckland Council working report, WR2013/001.

  91. Sakthivel, R., Jawahar Raj, N., Sivasankar, V., Akhila, P., & Omine, K. (2019). Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Applied Water Science, 9, 24.

    Article  Google Scholar 

  92. Sargaonkar, A. P., Rathi, B., & Baile, A. (2011). Identifying potential sites for artificial groundwater recharge in sub-watershed of River Kanhan. India. Environmental Earth Sciences, 62(5), 1099–1108.

    Article  Google Scholar 

  93. Schulz, W. H., McKenna, J. P., Kibler, J. D., & Biavati, G. (2009). Relations between hydrology and velocity of a continuously moving landslide—Evidence of pore-pressure feedback regulating landslide motion? Landslides, 6, 181–190.

    Article  Google Scholar 

  94. Schumm, S. A. (1956). Evoulation of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597–646.

    Article  Google Scholar 

  95. Singh, V. P. (1992). Elementary hydrology. New Jersey: Prentice Hall.

    Google Scholar 

  96. Smith, M., de Groot, D., Perrot-Maîte, D., & Bergkamp, G. (2006). Pay—Establishing payments for watershed services. Gland: IUCN.

    Google Scholar 

  97. Sofia, G., Hillier, J. K., & Conway, S. J. (2016). Frontiers in geomorphometry and earth surface dynamics: Possibilities, limitations and perspectives. Earth Surface Dynamics, 4(3), 721–725.

    Article  Google Scholar 

  98. Spangenberg, J. H., & Settele, J. (2010). Precisely incorrect? Monetising the value of ecosystem services. Ecological Complexity, 7(3), 327–337.

    Article  Google Scholar 

  99. Strahler, A. N. (1952). Hypsometric (area–altitude) analysis of erosional topology. Geological Society of America Bulletin, 63(11), 1117–1142.

    Article  Google Scholar 

  100. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  101. Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology. New York: McGraw Hill.

    Google Scholar 

  102. Sujaul, I. M., Hossain, M. A., Nasly, M. A., & Sobahan, M. A. (2013). Effect of industrial pollution on the spatial variation of surface water quality. American Journal of Environmental Science, 9(2), 120–129.

    CAS  Article  Google Scholar 

  103. Suhardiman, D., Pavelic, P., Keovilignavong, O., & Giordano, M. (2018): Putting farmers’ strategies in the centre of agricultural groundwater use in the Vientiane Plain, Laos. International Journal of Water Resources Development.

  104. Suresh, M., Shudhakar, S., Tiwari, K. N., & Chowdary, V. M. (2004). Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. Journal of the Indian Society of Remote Sensing, 32(3), 249–259.

    Article  Google Scholar 

  105. Suruhanjaya Perkhidmatan Air Negara, Malaysia. (2016). Water rates in Malaysia. http://www.span.gov.my/pdf/Water_Tariff_2016.pdf. Accessed 18 June 2016.

  106. The Economics of Ecosystems and Biodiversity. (2010). The economics of ecosystems and biodiversity: ecological and economic foundations. London: Earthscan.

    Google Scholar 

  107. Thorndycroft, V. R., Benito, G., & Gregory, K. J. (2008). Fluvial geomorphology: A perspective on current status and methods. Geomorphology, 98, 2–12.

    Article  Google Scholar 

  108. Thorp, J. H., Flotemersch, J. E., Delong, M. D., Casper, A. F., Thoms, M. C., Ballantyne, F., et al. (2010). Linking ecosystem services, rehabilitation and river hydrogeomorphology. BioScience, 60, 67–74.

    Article  Google Scholar 

  109. Travelletti, J., & Malet, J. P. (2012). Characterization of the 3D geometry of flow-like landslides: A methodology based on the integration of heterogeneous multi-source data. Engineering Geology, 128, 30–48.

    Article  Google Scholar 

  110. Troy, A., & Wilson, M. A. (2006). Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecological Economics, 60, 435–449.

    Article  Google Scholar 

  111. United Nations Environment Programme. (2010). Clearing the waters: A focus on water quality solutions. Nairobi: Pacific Institute.

    Google Scholar 

  112. Varotsos, C. A., Tzanis, C. G., & Sarlis, N. V. (2016). On the progress of the 2015–2016 El Nino event. Atmospheric Chemistry and Physics, 16, 2007–2011.

    CAS  Article  Google Scholar 

  113. Vidal-Abarca, M. R., Suarez-Alonso, M. L., Santos-Martin, F., Martin-Lopez, B., Benayas, J., & Montes, C. (2014). Understanding complex links between fluvial ecosystems and social indicators in Spain: An ecosystem services approach. Ecological Complexity, 20, 1–10.

    Article  Google Scholar 

  114. Vote, C., Newby, J., Phouyyavong, K., Inthavong, T., & Eberbach, P. (2015). Trends and perceptions of rural household groundwater use and the implications for smallholder agriculture in rainfed Southern Laos. International Journal of Water Resources Development, 31(4), 558–574.

    Article  Google Scholar 

  115. Wang, C., Deser, C., Yu, J. Y., DiNezio, P., & Clement, A. (2017). El Nino and Southern Oscillation (ENSO): A review. In P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral Reefs of the eastern tropical pacific. New York: Springer.

    Google Scholar 

  116. Wunder, S., Engel, S., & Pagiola, S. (2008). Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecological Economics, 65, 834–852.

    Article  Google Scholar 

  117. Wunder, S. (2013). When payments for environmental services will work for conservation. Conservation Letters, 6, 230–237.

    Article  Google Scholar 

  118. Wunder, S. (2015). Revisiting the concept of payments for environmental services. Ecological Economics, 117, 234–243.

    Article  Google Scholar 

  119. Zainal Abidin, Z. R. (2004). Water resources management in Malaysia—The way forward. Kuala Lumpur: Board of Engineers.

    Google Scholar 

  120. Ziegler, A. D., Negishi, J. N., Sidle, R. C., Noguchi, S., & Nik, A. R. (2006). Impacts of logging disturbance on hillslope saturated hydraulic conductivity in a tropical forest in Peninsular Malaysia. CATENA, 67, 89–104.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the anonymous reviewers who have offered thoughtful comments that helped to enrich the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Casey Keat-Chuan Ng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ng, C.KC., Ooi, P.AC., Wong, WL. et al. The geomorphology and ecosystem service economic value baselines of tributary watersheds in Malaysia. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01253-y

Download citation

Keywords

  • Ecosystem service
  • Planning
  • Policy
  • River
  • Water basin