Life Cycle Assessment of Coal-to-Liquid Process

Abstract

In this study, the life cycle assessment method was used to evaluate energy and material consumption and pollutant emission based on the 2013 ledger data of a coal chemistry factory in western China and the subprocesses used include coal gasification, conversion, purification, Fischer–Tropsch synthesis and liquid hydrocarbons separation. This method provides a comprehensive understanding of the potential environmental burden of coal-to-liquid (CTL) production and can be used to identify areas with significant potential for improving energy efficiency and reducing pollutant emissions. The results indicate that the main source of pollution in the CTL program is CTL processing step. Large amounts of water are consumed in the coal mining and CTL processing. The total amount of gaseous pollutants discharged to produce one ton of liquid hydrocarbon is 25.629 t, and 99.5% of this total consists of greenhouse gases. Over the entire life cycle of one ton of this liquid hydrocarbon, 31.955 tons of greenhouse gases (calculated as CO2) are emitted, and the weighted impact potential value is 3.149/PET2010. A series of relevant and consistent emission standards, laws and policies must be issued for the reasonable and orderly growth of the coal chemical industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aliyon, K., Hajinezhad, A., & Mehrpooya, M. (2019). Energy assessment of coal-fired steam power plant, carbon capture, and carbon liquefaction process chain as a whole. Energy Conversion and Management, 199, 111994. https://doi.org/10.1016/j.enconman.2019.111994.

    CAS  Article  Google Scholar 

  2. CLCD. (2012). Chinese life cycle database. Beijing: CLCD.

    Google Scholar 

  3. CRAES. (2011). Pollutant emission coefficient handbook for industrial sources. Beijing: CRAES.

    Google Scholar 

  4. CSY. (2015). China statistical yearbook. Beijing: China Statistical Publishing House.

    Google Scholar 

  5. CSY. (2016–2017). China statistical yearbook. Beijing: China Statistics Press.

  6. CSY. (2017). China Statistical Yearbook. China Statistics Press.

  7. CSY. (2019). China statistical yearbook. Beijing: China Statistical Publishing House.

  8. Cui, L., Ba, K., Li, F., Wang, Q., Ma, Q., Yuan, X., et al. (2020). Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Science of the Total Environment, 725, 138292. https://doi.org/10.1016/j.scitotenv.2020.138292.

    CAS  Article  Google Scholar 

  9. Di, X. H., Nie, Z. R., & Zuo, T. Y. (2005). Life cycle emission inventories for the fuels consumed by thermal power in China. China Environmental Ence, 25(5), 632–635.

    CAS  Google Scholar 

  10. Dong, X., Siyu, Y., Xiuxi, L., & Yu, Q. (2015). Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China. Energy Conversion and Management, 90, 12–20.

    Article  Google Scholar 

  11. Farjana, S. H., Huda, N., Mahmud, M. A. P., & Lang, C. (2019). Impact analysis of gold silver refining processes through life-cycle assessment. Journal of Cleaner Production, 228, 867–881. https://doi.org/10.1016/j.jclepro.2019.04.166.

    CAS  Article  Google Scholar 

  12. Gao, D., Qiu, X., Zhang, Y., & Liu, P. (2018). Life cycle analysis of coal based methanol-to-olefins processes in China. Computers and Chemical Engineering, 109, 112–118. https://doi.org/10.1016/j.compchemeng.2017.11.001.

    CAS  Article  Google Scholar 

  13. Han, X., Chen, N., Yan, J., Liu, J., Liu, M., & Karellas, S. (2019). Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater pre-heater under partial loads. Journal of Cleaner Production, 233, 1106–1122. https://doi.org/10.1016/j.jclepro.2019.06.159.

    Article  Google Scholar 

  14. Jianxin, Y., Cheng, X., & Rusong, W. (2002). Methodology and application of life cycle assessment. Beijing: China Meteorological Press.

    Google Scholar 

  15. Kythavone, L., & Chaiyat, N. (2020). Life cycle assessment of a very small organic Rankine cycle and municipal solid waste incinerator for infectious medical waste. Thermal Science and Engineering Progress, 18, 100526. https://doi.org/10.1016/j.tsep.2020.100526.

    Article  Google Scholar 

  16. Li, B., Wu, J., & Lu, J. (2020). Life cycle assessment considering water-energy nexus for lithium nanofiltration extraction technique. Journal of Cleaner Production, 261, 121152. https://doi.org/10.1016/j.jclepro.2020.121152.

    CAS  Article  Google Scholar 

  17. Li, H. (2015). Techno-economic analysis and life cycle assessment of coal-based synthetic natural gas. Guangzhou: South China University of Technology.

    Google Scholar 

  18. Li, S., Gao, L., & Jin, H. (2016). Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China. Energy Conversion and Management, 112, 91–100. https://doi.org/10.1016/j.enconman.2015.12.075.

    CAS  Article  Google Scholar 

  19. Li, X., Ou, X., Zhang, X., Zhang, Q., & Zhang, X. (2013). Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010. Energy, 50, 15–23.

    CAS  Article  Google Scholar 

  20. Liang, X., Wang, Z., Zhou, Z., Huang, Z., Zhou, J., & Cen, K. (2013). Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production, 39, 24–31.

    CAS  Article  Google Scholar 

  21. Lin, B., & Long, H. (2016). Emissions reduction in China’s chemical industry—Based on LMDI. Renewable and Sustainable Energy Reviews, 53, 1348–1355.

    CAS  Article  Google Scholar 

  22. Longo, S., Cellura, M., Guarino, F., Brunaccini, G., & Ferraro, M. (2019). Life cycle energy and environmental impacts of a solid oxide fuel cell micro-CHP system for residential application. Science of The Total Environment, 685, 59–73. https://doi.org/10.1016/j.scitotenv.2019.05.368.

    CAS  Article  Google Scholar 

  23. Mantripragada, H. C., & Rubin, E. S. (2013). CO2 implications of coal-to-liquids (CTL) plants. International Journal of Greenhouse Gas Control, 16, 50–60.

    CAS  Article  Google Scholar 

  24. Meng-Jie, G., Hui-Min, L., & Ye, Q. (2015). Impact of coal-based synthetic natural gas to electricity on carbon emissions and regional environment in China. China Population, Resources and Environment, 5, 151–159.

    Google Scholar 

  25. NEAC. (2017). National energy administration of China. The Notice on “13th Five-year” Planning on Industry Demonstration of Coal Deep Processing.

  26. Pan, X., Yan, Y., Peng, X., & Liu, Q. (2016). Analysis of the threshold effect of financial development on China’s carbon intensity. Sustainability, 8(3), 271–285.

    Article  Google Scholar 

  27. Qi, T., Li, Z., Zhang, X., & Ren, X. (2012). Regional economic output and employment impact of coal-to-liquids (CTL) industry in China: An input-output analysis. Energy, 46(1), 259–263.

    Article  Google Scholar 

  28. Qin, Z., Zhai, G., Wu, X., Yu, Y., & Zhang, Z. (2016a). Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment. Energy Conversion and Management, 124, 168–179.

    CAS  Article  Google Scholar 

  29. Qin, Z., Zhai, G., Wu, X., Yu, Y., & Zhang, Z. (2016b). Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment. Energy Conversion and Management, 124, 168–179. https://doi.org/10.1016/j.enconman.2016.07.005.

    CAS  Article  Google Scholar 

  30. Ubando, A. T., Rivera, D. R. T., Chen, W. H., & Culaba, A. B. (2019). A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresource Technology, 291, 121837. https://doi.org/10.1016/j.biortech.2019.121837.

    CAS  Article  Google Scholar 

  31. Verma, A., & Kumar, A. (2015). Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, 147, 556–568.

    CAS  Article  Google Scholar 

  32. Wang, J., Wang, R., Zhu, Y., & Li, J. (2018). Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy, 115, 374–384. https://doi.org/10.1016/j.enpol.2018.01.040.

    CAS  Article  Google Scholar 

  33. Xie, K. (2020). Thoughts on the development of modern coal chemical industry during the 14th five-year plan. Coal Economic Research, 40(5), 1–3.

    Google Scholar 

  34. Xie, K., Li, W., & Wei, Z. (2010). Coal chemical industry and its sustainable development in China. Energy, 35(11), 4349–4355.

    CAS  Article  Google Scholar 

  35. Yang, B., Wei, Y.-M., Hou, Y., Li, H., & Wang, P. (2019). Life cycle environmental impact assessment of fuel mix-based biomass cofiring plants with CO2 capture and storage. Applied Energy, 252, 113483.

    CAS  Article  Google Scholar 

  36. Yang, D., Jia, X., Dang, M., Han, F., Shi, F., Tanikawa, H., et al. (2020b). Life cycle assessment of cleaner production measures in monosodium glutamate production: A case study in China. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.122126.

    Article  Google Scholar 

  37. Yang, Q., Qian, Y., Kraslawski, A., Zhou, H., & Yang, S. (2016). Advanced exergy analysis of an oil shale retorting process. Applied Energy, 165, 405–415. https://doi.org/10.1016/j.apenergy.2015.12.104.

    Article  Google Scholar 

  38. Yang, X., Deng, Z., Liu, C., Zhou, Z., Ren, H., et al. (2020a). Techno-economic analysis of coal-to-liquid processes with different gasifier alternatives. Journal of Cleaner Production, 253, 120006. https://doi.org/10.1016/j.jclepro.2020.120006.

    CAS  Article  Google Scholar 

  39. Yu, P., Luo, Z., Wang, Q., & Fang, M. (2019). Life cycle assessment of transformation from a sub-critical power plant into a polygeneration plant. Energy Conversion and Management, 198, 111801. https://doi.org/10.1016/j.enconman.2019.111801.

    Article  Google Scholar 

  40. Zhang, X., Bauer, C., Mutel, C. L., & Volkart, K. (2017). Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications. Applied Energy, 190, 326–338. https://doi.org/10.1016/j.apenergy.2016.12.098.

    CAS  Article  Google Scholar 

  41. Zhao, W., Sun, Y., Zhang, W., & Liang, S. (2016). Eco-efficiency analysis of municipal solid waste recycling systems by using life cycle approaches. Acta Ecologica Sinica, 36(22), 7208–7216.

    Google Scholar 

  42. Zhou, H., Yang, Q., Zhu, S., Song, Y., & Zhang, D. (2019). Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels. Resources, Conservation and Recycling, 144, 74–81. https://doi.org/10.1016/j.resconrec.2019.01.031.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported with grants from Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan——Beijing Municipal College "Great Wall" Scholars Projects (CIT&TCD20190314), the Ministry of Ecology and Environment (CC20160801), the Beijing Climate Change Response Research and Education Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ling Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhu, L. Life Cycle Assessment of Coal-to-Liquid Process. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01252-z

Download citation

Keywords

  • Coal-to-liquid (CTL) processing
  • Life cycle assessment
  • Pollutant emission
  • Greenhouse gas