Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region

Abstract

Spatial simulation of land-use change scenarios in metropolitan areas is essential for analyzing both the causes and consequences of various future scenarios and is also valuable for land-use planning and management. However, current simulation models primarily focus on spatial and rarely on quantitative driving factors. This article aims to simulate future scenarios of land-use changes in the Tehran metropolitan region (TMR) by combining different models to fill this gap. Thus, in the first step, land-use changes were analyzed in the period 1985, 2000, and 2015. Then, by identifying the impact of driving factors and land-use transition potentials with Logistic regression (LR), land-use changes were allocated using the Cellular Automata (CA) method. Finally, with the validation of the model, four scenarios of the current trend(CT), socioeconomic growth(SEG), ecological-oriented(EO), and integrated development(ID) were suggested with the combination of the System Dynamic (SD) model. The results show that the trend of land-use changes in TMR has led to the destruction of grassland, agricultural, and uncultivated lands and the continuation of this trend will increase the damage of built-up areas on valuable natural and ecological resources. In this way, proximity to roads, distance from built-up areas, and natural factors had the greatest impact on changes. Based on future scenarios in 2030, the change in the SEG-scenario shows a rapid increase in built-up areas (2858km2) and encroachment on agricultural lands (2171km2). In the EO-scenario, destruction of grassland and agricultural lands and the growth of built-up areas will be limited, while CT-scenario leads to the high growth of built-up areas along with destructive impacts on natural and open spaces. In the ID-scenario, the built-up areas and grasslands will increase to 2808km2 and 7438km2, respectively. Accordingly, policy-makers can use simulation of different scenarios to mitigate probable consequences of land-use changes in the metropolitan regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abuelaish, B., & Olmedo, M. T. C. (2016). The scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models. Arabian Journal of Geosciences, 9(4), 2292–2297.

    Article  Google Scholar 

  2. Al-shalabi, M., Billa, L., Pradhan, B., Mansor, S., & Al-Sharif, A. A. A. (2013). Modeling urban growth evolution and land-use changes using GIS-based cellular automata and SLEUTH models: The case of Sana’a metropolitan city. Yemen. Environmental Earth Sciences, 70(1), 425–437.

    Article  Google Scholar 

  3. Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land-use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291–4301.

    Article  Google Scholar 

  4. Alaei Moghadam, S., & Karimi, M. (2016). The modeling growth pattern of urban patches using a patch-growing algorithm based on cellular automata in the Tehran megalopolitan area. Journal of Geospatial Information Technology, 4(3), 89–107.

    Article  Google Scholar 

  5. Alidadi, M., & Dadashpoor, H. (2018). Beyond monocentricity: examining the spatial distribution of employment in the Tehran metropolitan region. Iran. International Journal of Urban Sciences, 22(1), 38–58.

    Article  Google Scholar 

  6. Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2012). Integration of logistic regression, Markov chain, and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), 265–275.

    Google Scholar 

  7. Arsanjani, J. J., Kainz, W., & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov chain based on cellular automata: The case of Tehran. International Journal of Image and Data Fusion, 2(4), 329–345.

    Article  Google Scholar 

  8. Arunyawat, S., & Shrestha, R. P. (2018). Simulating future land use and ecosystem services in Northern Thailand. Journal of Land Use Science, 00(00), 1–20.

    Google Scholar 

  9. Azadi, H., Barati, A. A., Rafiaani, P., Raufirad, V., Zarafshani, K., Mamoorian, M., & Lebailly, P. (2016). Agricultural Land Conversion Drivers in Northeast Iran: Application of Structural Equation Model. Applied Spatial Analysis and Policy, 9(4), 591–609.

    Article  Google Scholar 

  10. Azari, M., Tayyebi, A., Helbich, M., & Reveshty, M. A. (2016). Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: Application to Maragheh. Iran. GIScience and Remote Sensing, 53(2), 183–205.

    Article  Google Scholar 

  11. Batty, M., Xie, Y., & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3), 205–233.

    Article  Google Scholar 

  12. Berberoğlu, S., Akin, A., & Clarke, K. C. (2016). Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: A comparative approach. Landscape and Urban Planning, 153, 11–27.

    Article  Google Scholar 

  13. Bihamta, N., Soffianian, A., Fakheran, S., & Gholamalifard, M. (2015). Using the SLEUTH Urban Growth Model to Simulate Future Urban Expansion of the Isfahan Metropolitan Area. Iran. Journal of the Indian Society of Remote Sensing, 43(2), 407–414.

    Article  Google Scholar 

  14. Cheng, J., & Masser, I. (2004). Understanding spatial and temporal processes of urban growth: Cellular automata modeling. Environment and Planning B: Planning and Design, 31(2), 167–194.

    Article  Google Scholar 

  15. Costanza, R., & Ruth, M. (1998). Using dynamic modeling to scope environmental problems and building consensus. Environmental Management, 22(2), 185–195.

    Article  Google Scholar 

  16. Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019a). Analyzing spatial patterns, driving forces, and predicting future growth scenarios for supporting sustainable urban growth : Evidence from Tabriz metropolitan area. Iran. Sustainable Cities and Society, 47, 101502.

    Article  Google Scholar 

  17. Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019b). Land-use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707–719.

    CAS  Article  Google Scholar 

  18. Dadashpoor, H., & Ahani, S. (2021). Explaining objective forces, driving forces, and causal mechanisms affecting the formation and expansion of the peri-urban areas: A critical realism approach. Land Use Policy, 102, 105232.

    Google Scholar 

  19. Dadashpoor, H., & Alidadi, M. (2017). Towards decentralization: Spatial changes of employment and population in Tehran Metropolitan Region, Iran. Applied Geography, 85, 51–61.

    Article  Google Scholar 

  20. Dadashpoor, H., & Nateghi, M. (2017). Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region. Iran. Environment, Development, and Sustainability, 19(2), 527–547.

    Article  Google Scholar 

  21. Dadashpoor, H., & Salarian, F. (2020). Urban sprawl on natural lands: Analyzing and predicting the trend of land-use changes and sprawl in Mazandaran city region. Iran. Environment, Development, and Sustainability, 22(2), 593–614.

    Article  Google Scholar 

  22. Deng, X., & Li, Z. (2016). A review of historical trajectories and spatially explicit scenarios of land-use and land-cover changes in China. Journal of Land Use Science, 11(6), 709–724.

    Article  Google Scholar 

  23. Geng, B., Zheng, X., & Fu, M. (2017). Scenario analysis of sustainable intensive land use based on SD model. Sustainable Cities and Society, 29, 193–202.

    Article  Google Scholar 

  24. Goodarzi, M. S., Sakieh, Y., & Navardi, S. (2017). Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system. Environment, Development, and Sustainability, 19(3), 1103–1126.

    Article  Google Scholar 

  25. Haghani, A., Lee, S. Y., & Byun, J. H. (2003). A system dynamics approach to land use/transportation system performance modeling Part I: Methodology. Journal of Advanced Transportation, 37(1), 1–41.

    Article  Google Scholar 

  26. Han, H., Yang, C., & Song, J. (2015). Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing. China. Sustainability, 7(4), 4260–4279.

    Article  Google Scholar 

  27. Henareh Khalyani, A., Mayer, A. L., Falkowski, M. J., & Muralidharan, D. (2013). Deforestation and landscape structure changes related to socioeconomic dynamics and climate change in Zagros forests. Journal of Land Use Science, 8(3), 321–340.

    Article  Google Scholar 

  28. Henríquez-Dole, L., Usón, T. J., Vicuña, S., Henríquez, C., Gironás, J., & Meza, F. (2018). Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin. Chile. Land Use Policy, 78(June), 353–366.

    Article  Google Scholar 

  29. Hosseinali, F., Alesheikh, A. A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, 105–113.

    Article  Google Scholar 

  30. Iran Department of Environment. (2015). Iran’s third national communication to UNFCCC. Tehran, Iran. Retrieved from www.doe.ir.

  31. Koomen, E., Koekoek, A., & Dijk, E. (2011). Simulating Land-use Change in a Regional Planning Context. Applied Spatial Analysis and Policy, 4(4), 223–247.

    Article  Google Scholar 

  32. Ku, C.-A. (2016). Incorporating spatial regression model into cellular automata for simulating land-use change. Applied Geography, 69, 1–9.

    Article  Google Scholar 

  33. Lamine, S., Petropoulos, G. P., Singh, S. K., Szabó, S., Bachari, N. E. I., Srivastava, P. K., et al. (2018). Quantifying land use/land cover spatiotemporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS®. Geocarto international, 33(8), 862–878.

    Article  Google Scholar 

  34. Li, Y. C., & He, C. Y. (2008). Scenario simulation and forecast of land use/cover in northern China. Chinese Science Bulletin, 53(9), 1401–1412.

    Google Scholar 

  35. Liao, J., Tang, L., Shao, G., Su, X., Chen, D., & Xu, T. (2016). Environmental Modelling & Software Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling and Software, 75, 163–175.

    Article  Google Scholar 

  36. Liu, D., Zheng, X., Wang, H., Zhang, C., Li, J., & Lv, Y. (2018). Interoperable scenario simulation of land-use policy for Beijing–Tianjin–Hebei region, China. Land Use Policy, 75, 155–165.

    Article  Google Scholar 

  37. Liu, M., Hu, Y., Zhang, W., Zhu, J., Chen, H., & Xi, F. (2011). Application of land-use change model in guiding regional planning: A case study in Hun-Taizi River watershed. Northeast China. Chinese Geographical Science, 21(5), 609–618.

    Article  Google Scholar 

  38. Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land-use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168(October), 94–116.

    Article  Google Scholar 

  39. Liu, Y., Batty, M., Wang, S., & Corcoran, J. (2019). Modelling urban change with cellular automata: Contemporary issues and future research directions. Progress in Human Geography. https://doi.org/10.1177/0309132519895305.

    Article  Google Scholar 

  40. Liu, Y., & Feng, Y. (2012). A Logistic Based Cellular Automata Model for Continuous Urban Growth Simulation: A Case Study of the Gold Coast City, Australia. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-Based Models of Geographical Systems (pp. 643–662). NewYork: Springer.

    Google Scholar 

  41. Luo, J., & Wei, Y. H. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), 51–64.

    Article  Google Scholar 

  42. Mahmoodzadeh, H., & Khoshroy, G. (2015). Application of Logistic regression in Urban Development Modeling: The case study of Bonab urban region. Motaleate Shahri, 4(14), 31–46. (In Persian).

    Google Scholar 

  43. Maimaitijiang, M., Ghulama, A., Onésimo Sandoval, J. S., & Maimaitiyiming, M. (2015). Drivers of land cover and land-use changes in the St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. International Journal of Applied Earth Observation and Geoinformation, 35, 161–174.

    Article  Google Scholar 

  44. Mancosu, E., Gago-Silva, A., Barbosa, A., de Bono, A., Ivanov, E., Lehmann, A., & Fons, J. (2015). Future land-use change scenarios for the Black Sea catchment. Environmental Science and Policy, 46, 26–36.

    Article  Google Scholar 

  45. Moein, M., Asgarian, A., Sakieh, Y., & Soffianian, A. (2018). Scenario-based analysis of land-use competition in central Iran: Finding the trade-off between urban growth patterns and agricultural productivity. Sustainable Cities and Society, 39, 557–567.

    Article  Google Scholar 

  46. Puertas, O. L., Henríquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land-use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy, 38, 415–425.

    Article  Google Scholar 

  47. Rounsevell, M. D. A., Reginster, I., Araújo, M. B., Carter, T. R., Dendoncker, N., Ewert, F., & Tuck, G. (2006). A coherent set of future land-use change scenarios for Europe. Agriculture, Ecosystems, and Environment, 114(1), 57–68.

    Article  Google Scholar 

  48. Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2015). Simulating urban expansion and scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study of Karaj City. Iran. Journal of Housing and the Built Environment, 30(4), 591–611.

    Article  Google Scholar 

  49. Senes, G., & Toccolini, A. (1998). Sustainable land-use planning in protected rural areas in Italy. Landscape and Urban Planning, 41(2), 107–117.

    Article  Google Scholar 

  50. Shafizadeh-Moghadam, H., Asghari, A., Taleai, M., Helbich, M., & Tayyebi, A. (2017a). Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. GIScience & Remote Sensing, 54(5), 639–656.

    Article  Google Scholar 

  51. Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., & Taleai, M. (2017b). Coupling machine learning, tree-based, and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, 297–308.

    Article  Google Scholar 

  52. Silva, E. A., & Clarke, K. C. (2005). Complexity, emergence, and cellular urban models: Lessons learned from applying Sleuth to two Portuguese metropolitan areas. European Planning Studies, 13(1), 93–115.

    Article  Google Scholar 

  53. Statistical center of Iran. (1986–2016). General census of population and housing. Retrieved from www.amar.org.

  54. Sun, P., Xu, Y., Yu, Z., Liu, Q., Xie, B., & Liu, J. (2016). Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province. Journal of Geographical Sciences, 26(3), 272–296.

    CAS  Article  Google Scholar 

  55. Sun, X., Yue, T., & Fan, Z. (2012). Scenarios of changes in the spatial pattern of land use in China. Procedia Environmental Sciences, 13, 590–597.

    Article  Google Scholar 

  56. Verburg, P. H., Rounsevell, M. D. A., & Veldkamp, A. (2006). Scenario-based studies of future land use in Europe. Agriculture, Ecosystems & Environment, 114(1), 1–6.

    Article  Google Scholar 

  57. Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. A. (2002). Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30(3), 391–405.

    Article  Google Scholar 

  58. Walsh, S. J., Entwisle, B., Rindfuss, R. R., & Page, P. H. (2006). Spatial simulation modeling of land use/land cover change scenarios in northeastern Thailand: A cellular automata approach. Journal of Land Use Science, 1(1), 5–28.

    Article  Google Scholar 

  59. Wu, Q., Li, H. Q., Wang, R. S., Paulussen, J., He, Y., Wang, M., & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and urban planning, 78(4), 322–333.

    Article  Google Scholar 

  60. Yang, X., Chen, R., & Zheng, X. Q. (2016). Simulating land-use change by integrating ANN-CA model and landscape pattern indices. Geomatics, Natural Hazards, and Risk, 7(3), 918–932.

    Article  Google Scholar 

  61. Yang, X., & Lo, C. P. (2003). Modeling urban growth and landscape changes in the Atlanta metropolitan area. International Journal of Geographical Information Science, 17(5), 463–488.

    Article  Google Scholar 

  62. Zarei, A., Dadashpoor, H., & Amini, M. (2016). Determination of the optimal land-use allocation pattern in Nowshahr County, Northern Iran. Environment, Development, and Sustainability, 18(1), 37–56.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hashem Dadashpoor or Hossein Panahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dadashpoor, H., Panahi, H. Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01231-4

Download citation

Keywords

  • Land-use changes
  • Spatial simulation
  • Socioeconomic
  • Climate changes
  • Integrated development
  • Trend scenarios
  • System dynamics
  • Metropolitan regions