The Surface Urban Heat Island Intensity and Urban Expansion: A comparative analysis for the coastal areas of Pakistan

Abstract

Urbanization and urban heat island have significant impacts that vary from local to global levels; therefore, cities are under greater threat to global environmental change. This study, for the first time, focuses on comparative assessment of an iconic phenomenon of “surface urban heat island” (SUHI) in the coastal areas of Pakistan. For the purpose of this study, remote sensing techniques are used. Data for the period of January 2017 to December 2017, day and night scenes of TERRA/MODIS are obtained to create land surface temperature (LST) maps. Surface temperatures are examined against land cover data across various cities while comparing them with LSTs and land cover data in GIS Software. Spatial patterns of SUHI in each city are also investigated through its diurnal variation and seasonal changes. Association between SUHI and wind stream is presented in monthly analysis, which indicates that high wind speed is generally linked with the lowest development of SUHI. This research provides a broad perspective over the SUHI phenomenon in the coastal areas of Pakistan, and the results will be useful for urban planners to make decisions that can enhance environmental sustainability practices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alavipanah, S., Wegmann, M., Qureshi, S., Weng, Q., & Koellner, T. (2015). The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability,7(4), 4689–4706. https://doi.org/10.3390/su7044689.

    Article  Google Scholar 

  2. Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology,23(1), 1–26. https://doi.org/10.1002/joc.859.

    Article  Google Scholar 

  3. Azevedo, J. A., Chapman, L., & Muller, C. L. (2016). Quantifying the daytime and night-time urban heat island in Birmingham, UK: A comparison of satellite derived land surface temperature and high-resolution air temperature observations. Remote Sensing,8(2), 153. https://doi.org/10.3390/rs8020153.

    Article  Google Scholar 

  4. Bottyan, Z., Kircsi, A., Szegedi, S., & Unger, J. (2005). The relationship between built-up areas and the spatial development of the mean and maximum urban heat island in Debrecen, Hungry. International Journal of Climatology,25, 405–418. https://doi.org/10.1002/joc.1138.

    Article  Google Scholar 

  5. Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology,25(1), 17–33. https://doi.org/10.1007/s10980-009-9402-4.

    Article  Google Scholar 

  6. Carlson, T. N., & Arthur, S. T. (2000). The impact of land use land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Global and Planetary Change,25(1–2), 49–65. https://doi.org/10.1016/S0921-8181(00)00021-7.

    Article  Google Scholar 

  7. Census Report. (2017). District wise census results. Retrieved September 30, 2019, from http://www.pbs.gov.pk/content/population-census.

  8. Clinton, N., & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment,134, 294–304. https://doi.org/10.1016/j.rse.2013.03.008.

    Article  Google Scholar 

  9. Earl, N., Simmonds, I., & Tapper, N. (2016). Weekly cycles in peak time temperatures and urban heat island intensity. Environmental Research Letters. https://doi.org/10.1088/1748-9326/11/7/074003.

    Article  Google Scholar 

  10. Eliasson, I. (1996). Urban nocturnal temperatures, street geometry and land use. Atmospheric Environment,30(3), 379–392. https://doi.org/10.1016/1352-2310(95)00033-X.

    CAS  Article  Google Scholar 

  11. Fan, Y., Li, Y., & Wang, X. (2016). A new convective velocity scale for studying diurnal urban heat island circulation. Journal of Applied Meteorology and Climatology,55, 2151–2164. https://doi.org/10.1175/JAMC-D-16-0099.1.

    Article  Google Scholar 

  12. Frey, C. M., Rigo, G., & Parlow, E. (2005). Investigation of the daily urban cooling island (UCI) in two coastal cities in an arid environment: Dubai and Abu Dhabi (UAE). Tempe: ISPRS (International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences). https://www.isprs.org/proceedings/xxxvi/8-w27/frey.pdf. Accessed 9 Aug 2019.

  13. Frey, C. M., Rigo, G., Parlow, E., & Marçal, A. (2006). The cooling effect of cities in a hot and dry environment. In Global developments in environmental earth observation from space: proceedings of the 25th EARSeL symposium, Porto, Portugal, Rotterdam (pp. 169–174). http://edoc.unibas.ch/dok/A6001400. Accessed 9 Aug 2019.

  14. Gabriel, K. M., & Endlicher, W. R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental pollution,159(8), 2044–2050. https://doi.org/10.1016/j.envpol.2011.01.016.

    CAS  Article  Google Scholar 

  15. García, F. F. (2009). City and climate change: General aspects and application to the metropolitan area of Madrid. Geographic Research,49, 173–195. https://doi.org/10.14198/INGEO2009.49.09.

    Article  Google Scholar 

  16. García-Cueto, O. R., Jauregui, E., Toudert, D., & Tejeda, A. (2007). Detection of the urban heat island in Mexicali, B.C., Mexico and its relationship with land use. Atmosphera,20(2), 111–132.

    Google Scholar 

  17. Gong, P., Liang, S., Carlton, E. J., Jiang, Q., Wu, J., Wang, L., et al. (2012). Urbanization and health in China. The Lancet,379(9818), 843–852. https://doi.org/10.1016/S0140-6736(11)61878-3.

    Article  Google Scholar 

  18. Hadjimitsis, D. G. (2010). Determination of urban growth in catchment areas in Cyprus using multi-temporal remotely sensed data: risk assessment study. Natural Hazards and Earth System Sciences,10, 2235–2240. https://doi.org/10.5194/nhess-10-2235-2010.

    Article  Google Scholar 

  19. Hafner, J., & Kidder, S. Q. (1999). Urban heat island modeling in conjunction with satellite-derived surface/soil parameters. Journal of Applied Meteorology,38, 448–465.

    Article  Google Scholar 

  20. Hamdi, R., & Schayes, G. (2008). Sensitivity study of the urban heat island intensity to urban characteristics. International Journal of Climatology,28, 973–982. https://doi.org/10.1002/joc.1598.

    Article  Google Scholar 

  21. Hathway, E. A., & Sharples, S. (2012). The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Building and Environment,58, 14–22. https://doi.org/10.1016/j.buildenv.2012.06.013.

    Article  Google Scholar 

  22. Hu, L., & Brunsell, N. A. (2015). A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote Sensing of Environment,158, 393–406. https://doi.org/10.1016/j.rse.2014.10.022.

    Article  Google Scholar 

  23. Hu, L., Monaghan, A., Voogt, J. A., & Barlage, M. (2016). A first satellite-based observational assessment of thermal anisotropy. Remote Sensing of Environment,181, 111–121. https://doi.org/10.1016/j.rse.2016.03.043.

    Article  Google Scholar 

  24. Hu, X. M., & Xue, M. (2016). Influence of Synoptic sea-breeze fronts on the urban heat island intensity in Dallas-Fort Worth, Texas. Monthly Weather Review,144, 1487–1507. https://doi.org/10.1175/MWR-D-15-0201.1.

    Article  Google Scholar 

  25. Hung, T., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation,8(1), 34–48. https://doi.org/10.1016/j.jag.2005.05.003.

    Article  Google Scholar 

  26. Imam, E., Kushwaha, S. P. S., & Singh, A. (2009). Evaluation of suitable tiger habitat in Chandoli National Park, India, using spatial modelling of environmental variables. Ecological Modelling,220(24), 3621–3629. https://doi.org/10.1016/j.ecolmodel.2009.06.044.

    Article  Google Scholar 

  27. Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment,114(3), 504–513. https://doi.org/10.1016/j.rse.2009.10.008.

    Article  Google Scholar 

  28. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature,423, 528–531. https://doi.org/10.1038/nature01675.

    CAS  Article  Google Scholar 

  29. Karl, T. R., Diaz, H. F., & Kukla, G. (1988). Urbanization: Its detection and effect in the United States climate record. Journal of Climatology,1(11), 1099–1123.

    Article  Google Scholar 

  30. Kato, S., & Yamaguchi, Y. (2005). Analysis of urban heat-island effect using ASTER and ETM + data. Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment,99, 44–54. https://doi.org/10.1016/j.rse.2005.04.026.

    Article  Google Scholar 

  31. Keramitsoglou, I., Kiranoudis, C. T., Ceriola, G., Weng, Q., & Rajasekar, U. (2011). Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sensing of Environment,115, 3080–3090. https://doi.org/10.1016/j.rse.2011.06.014.

    Article  Google Scholar 

  32. Khan, T. M. A., Razzaq, D. A., Chaudhry, Q. U. Z., Quadir, D. A., Kabir, A., & Sarker, M. A. (2002). Sea level variations and geomorphological changes in the coastal belt of Pakistan. Marine Geodesy,25, 159–174. https://doi.org/10.1080/014904102753516804.

    Article  Google Scholar 

  33. Kim, Y. H., & Baik, J. J. (2002). Maximum urban heat island intensity in Seoul. Journal of Applied Meteorology,41, 651–659. https://doi.org/10.1175/1520-0450(2002)041%3c0651:MUHIII%3e2.0.CO;2.

    Article  Google Scholar 

  34. Kuang, W., Dou, Y., Zhang, C., Chi, W., Liu, A., Liu, Y., et al. (2015a). Quantifying the heat flux regulation of metropolitan land-use/land-cover components by coupling remote sensing-modelling with in situ measurement. Journal of Geophysical Research: Atmospheres,120(1), 113–130. https://doi.org/10.1002/2014JD022249.

    Article  Google Scholar 

  35. Kuang, W., Liu, Y., Dou, Y., Chi, W., Chen, G., Gao, C., et al. (2015b). What are hot and what are not in an urban landscape: Quantifying and explaining the land surface temperature pattern in Beijing, China. Landscape Ecology,30(2), 357–373. https://doi.org/10.1007/s10980-014-0128-6.

    Article  Google Scholar 

  36. Landis, J. R., & Koch, G. G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics,33(2), 363–374. https://doi.org/10.2307/2529786.

    CAS  Article  Google Scholar 

  37. Lea, C., & Curtis, A. C. (2010). Thematic accuracy assessment procedures: National Park Service Vegetation Inventory, version 2.0. Natural resource report NPS/2010/NRR-2010/204. National Park Service, Fort Collins, Colorado. http://science.nature.nps.gov/im/inventory/veg/index.cfm. Accessed 23 July 2019.

  38. Lu, X., Chow, K. C., Yao, T., Fung, J. C. H., & Lau, A. K. H. (2009). Seasonal variation of the land-sea breeze circulation in the Pearl River Delta region. Journal Geophysical Research,114(17), D17112. https://doi.org/10.1029/2009JD011764.

    Article  Google Scholar 

  39. Majkowska, A., Kolendowicz, L., Półrolniczak, M., Hauke, J., & Czernecki, B. (2017). The urban heat island in the city of Poznań as derived from Landsat 5 TM. Theoretical and Applied Climatology,128, 769–783. https://doi.org/10.1007/s00704-016-1737-6.

    Article  Google Scholar 

  40. Mandal, A., Samanta, S., & Datta, D. (2006). Application of statistical pattern recognizing classifiers in identifying defects in FRP composites. Indian Society for Non-Destructive Testing Hyderabad.

  41. Mather, P., & Tso, B. (2009). Classification methods for remotely sensed data (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  42. Mihalakakou, G., Santamouris, M., Papanikolaou, N., Cartalis, C., & Tsangrassoulis, A. (2004). Simulation of the urban heat island phenomenon in mediterranean climates. Pure and Applied Geophysics,161, 429–451. https://doi.org/10.1007/s00024-003-2447-4.

    Article  Google Scholar 

  43. Morris, C. J. G., Simmonds, I., & Plummer, N. (2001). Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. Journal of Applied Meteorology,40, 169–182. https://doi.org/10.1175/1520-0450(2001)040%3C0169:QOTIOW%3E2.0.CO;2.

    Article  Google Scholar 

  44. NASA Prediction of Worldwide Energy Resources. Retrieved June 25, 2019, from https://power.larc.nasa.gov.

  45. Nassar, A. K., Blackburn, G. A., & Whyatt, J. D. (2016). Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs. International Journal of Applied Earth Observation and Geoinformation,51, 76–90. https://doi.org/10.1016/j.jag.2016.05.004.

    Article  Google Scholar 

  46. O’Loughlin, J., Witmer, F. D. W., Linke, A. M., Laing, A., Gettelman, A., & Dudhia, J. (2012). Climate variability and conflict risk in East Africa, 1990–2009. Proceedings of the National Academy of Sciences of the United States of America,109(45), 18344–18349. https://doi.org/10.1073/pnas.1205130109.

    Article  Google Scholar 

  47. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal Royal Meteorological Society,108, 1–24. https://doi.org/10.1002/qj.49710845502.

    Article  Google Scholar 

  48. Oke, T. R. (1987). Boundary layer climates (2nd ed.). London: Routledge.

    Google Scholar 

  49. Ortiz, M. J., Formaggio, A. R., & Epiphanio, C. N. (1997). Classification of croplands through integration of remote sensing, GIS and historical database. International Journal of Remote Sensing,18(1), 95–105. https://doi.org/10.1080/014311697219295.

    Article  Google Scholar 

  50. Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., et al. (2012). Surface urban heat island across 419 global big cities. Environmental Science and Technology,46, 696–703. https://doi.org/10.1021/es2030438.

    CAS  Article  Google Scholar 

  51. Pielke, R. A., Davey, C., & Morgan, J. (2004). Assessing “global warming” with surface heat content. EOS. Transactions of the American Geophysical Union,85, 210–211. https://doi.org/10.1029/2004EO210004.

    Article  Google Scholar 

  52. Qureshi, S. (2010). The fast-growing megacity Karachi as a frontier of environmental challenges: Urbanization and contemporary urbanism issues. Journal of Geography and Regional Planning,3(11), 306–321.

    Google Scholar 

  53. Rasul, A., Balzter, H., & Smith, C. (2015). Spatial variation of the daytime surface urban cool island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Climate,14(2), 176–186. https://doi.org/10.1016/j.uclim.2015.09.001.

    Article  Google Scholar 

  54. Rizvi, S. H., Alam, K., & Iqbal, M. J. (2019). Spatio-temporal variations in urban heat island and its interaction with heat wave. Journal of Atmospheric and Solar-Terrestrial Physics,185, 50–57. https://doi.org/10.1016/j.jastp.2019.02.001.

    Article  Google Scholar 

  55. Roth, M. (2013). Urban heat island. Handbook of environmental fluid dynamics (2). Boca Raton: CRC Press, LLC.

    Google Scholar 

  56. Sajjad, S. H., Blond, N., Clappier, A., Raza, A., Shirazi, S. A., & Shakrullah, K. (2010). The preliminary study of urbanization, fossil fuels consumptions and CO2 emission in Karachi. African Journal of Biotechnology,9(13), 1941–1948. https://doi.org/10.5897/AJB09.1723.

    CAS  Article  Google Scholar 

  57. Salma, S., Rehman, S., & Shah, M. A. (2012). Rainfall trends in different climate zones of Pakistan. Pakistan Journal of Meteorology,9(17), 37–47.

    Google Scholar 

  58. Sang, J., Zhang, Z., & Zhang, B. (2000). Dynamical analyses of heat island circulation. Acta Meteorologica Sinica,3, 321–327.

    Google Scholar 

  59. Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment,512–513, 582–598. https://doi.org/10.1016/j.scitotenv.2015.01.060.

    CAS  Article  Google Scholar 

  60. Schwarz, N., Lautenbach, S., & Seppelt, R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment,115, 3175–3186. https://doi.org/10.1016/j.rse.2011.07.003.

    Article  Google Scholar 

  61. Shiflett, S. A., Liang, L. L., Crum, S. M., Feyisa, G. L., Wang, J., & Jenerette, G. D. (2017). Variation in the urban vegetation, surface temperature, air temperature nexus. Science of the Total Environment,579, 495–505. https://doi.org/10.1016/j.scitotenv.2016.11.069.

    CAS  Article  Google Scholar 

  62. Small, C. (2006). Comparative analysis of urban reflectance and surface temperature. Remote Sensing of Environment,104, 168–189. https://doi.org/10.1016/j.rse.2005.10.029.

    Article  Google Scholar 

  63. Sobrino, J., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment,90, 434–440. https://doi.org/10.1016/j.rse.2004.02.003.

    Article  Google Scholar 

  64. Stewart, I. D. (2000). Influence of meteorological conditions on the intensity and form of the urban heat island effect in Regina. Canadian Geographer,44, 271–285. https://doi.org/10.1111/j.1541-0064.2000.tb00709.x.

    Article  Google Scholar 

  65. Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment,85(3), 282–289. https://doi.org/10.1016/S0034-4257(03)00007-5.

    Article  Google Scholar 

  66. Svensson, M. K. (2004). Sky view factor analysis-implications for urban air temperature differences. Meteorological Applications,11(3), 201–211. https://doi.org/10.1017/S1350482704001288.

    Article  Google Scholar 

  67. Syafii, N. I., Ichinose, M., Kumakura, E., Jusuf, S. K., Chigusa, K., & Wong, N. H. (2017). Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustainable Cities and Society,34, 79–89. https://doi.org/10.1016/j.scs.2017.06.012.

    Article  Google Scholar 

  68. Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., et al. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology,54(1), 75–84. https://doi.org/10.1007/s00484-009-0256-x.

    Article  Google Scholar 

  69. Unger, J. (2019). Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. International Journal of Environment and Pollution,36, 59–80. https://doi.org/10.1504/IJEP.2009.021817.

    Article  Google Scholar 

  70. U.S. Environmental Protection Agency. (2008). Urban heat island basics. Reducing urban heat islands: Compendium of strategies. Draft. https://www.epa.gov/heat-islands/heat-islandcompendium. Accessed 15 May 2019.

  71. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment,86, 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8.

    Article  Google Scholar 

  72. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment,89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005.

    Article  Google Scholar 

  73. Wu, J. J. (2008). Making the case for landscape ecology an effective approach to urban sustainability. Landscape Journal,27, 41–50. https://doi.org/10.3368/lj.27.1.41.

    Article  Google Scholar 

  74. Xiao, R. B., Ouyang, Z. Y., Zheng, H., Li, W. F., Schienke, E. W., & Wang, X. K. (2007). Spatial patterns of impervious surfaces and their impact on land surface temperature in Beijing, China. Journal of Environmental Sciences,19, 250–256. https://doi.org/10.1016/S1001-0742(07)60041-2.

    Article  Google Scholar 

  75. Yang, P., Ren, G., & Liu, W. (2013). Spatial and temporal characteristics of Beijing urban heat island intensity. Journal of Applied Meteorology and Climatology,52, 1803–1816. https://doi.org/10.1175/JAMC-D-12-0125.1.

    Article  Google Scholar 

  76. Yavuzturk, C., Ksaibati, K., & Chiasson, A. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering,17(4), 465–475. https://doi.org/10.1061/(ASCE)0899-1561.

    CAS  Article  Google Scholar 

  77. Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment,106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003.

    Article  Google Scholar 

  78. Zhang, P., Bounoua, L., Imhoff, M. L., Wolfe, R. E., & Thome, K. J. (2014). Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations. Canadian Journal of Remote Sensing,40(2), 110–122. https://doi.org/10.1080/07038992.2014.935934.

    Article  Google Scholar 

  79. Zhang, X., Zhong, T., Feng, X., & Wang, K. (2009). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing,30, 2105–2118. https://doi.org/10.1080/01431160802549252.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank USGS Earth Resource Observation Systems Data Center for providing free Landsat imagery that can be obtained from (https://earthexplorer.usgs.gov/). The MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid is acquired from the Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in the Goddard Space Flight Center in Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/). We are also grateful to the anonymous reviewers for their valuable suggestions on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahnilla Haider Rizvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizvi, S.H., Fatima, H., Alam, K. et al. The Surface Urban Heat Island Intensity and Urban Expansion: A comparative analysis for the coastal areas of Pakistan. Environ Dev Sustain (2020). https://doi.org/10.1007/s10668-020-00828-5

Download citation

Keywords

  • Surface urban heat island
  • Land cover land use
  • Land surface temperature