Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana


The Lower Anayari Catchment (LAC) groundwater system of the upper east region contributes substantially to the populace’s socioeconomic development. LAC is well distinguished for intense farming activities. This study sought to assess the quality and processes/activities that impact on the groundwater chemistry in the catchment. Forty-one (41) samples, comprising boreholes and hand-dug wells were sampled from six (6) prime communities (Kulwase, Manyoro, Mirigu, Nakolo, Paga and Pungu) for physico-chemical and stable isotopes analysis. Hydrochemistry, ionic ratios, principal component analysis (PCA), geostatistics and stable isotopes (δ18O and δ2H) approaches were applied to construe the hydrogeochemistry of the groundwater system. Utilizing PCA and geostatistics, two factors controlling groundwater quality were depicted as; (a) V1- the dissolution of silicate minerals and (b) V2- agrochemicals/domestic waste. Piper Trilinear plot identified two hydrochemical facies, namely, Ca-Na-HCO3 and Na-Ca-HCO3. Cation exchange processes and silicate weathering/dissolutions are main drivers of the groundwater chemistry. Stable isotopes suggests groundwater in LAC is mainly of meteoric origin and a well-mixed system. However, few deviations of groundwater isotopic signatures from GMWL were observed suggesting evaporation before recharge or recharge occurring from an enriched source.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Abdul-Wahab, D. (2016). Hydrogeochemical and isotopic studies of ground and surface waters in the Lower Anayari catchment area, Upper East region of Ghana. (MPhil. Thesis). University of Ghana, Legon.

  2. Acheampong, S. Y., & Hess, J. W. (1999). Hydrogeologic and hydrochemical framework of the shallow groundwater system in the southern Voltaian Sedimentary Basin of Ghana. Reply to comments by Pradeep Raj. Hydrogeology Journal,7(6), 592–595. https://doi.org/10.1007/s100400050232.

    Article  Google Scholar 

  3. Adomako, D., Osae, S., Akiti, T. T., Faye, S., & Maloszewski, P. (2011a). Geochemical and isotopic studies of groundwater conditions in the Densu River Basin of Ghana. Environmental Earth Sciences,62(5), 1071–1084. https://doi.org/10.1007/s12665-010-0595-2.

    CAS  Article  Google Scholar 

  4. Adomako, D. (2010). Geochemistry and recharge studies in the Densu river basin of Ghana using classical hydrological method, numerical modeling and tracer technique. PhD Dissertation. University of Ghana, Legon.

  5. Adomako, D., Gibrilla, A., Akiti, T. T., Fianko, R., & Maloszewski, P. (2011b). hydrogeochemical evolution and groundwater flow in the Densu river basin, Ghana. Journal of Water Resource and Protection,03(07), 548–561. https://doi.org/10.4236/jwarp.2011.37065.

    CAS  Article  Google Scholar 

  6. Adomako, D., Gibrilla, A., Maloszewski, P., Ganyaglo, S. Y., & Rai, S. P. (2015). Tracing stable isotopes (δ 2 H and δ 18 O) from meteoric water to groundwater in the Densu River basin of Ghana. EnvironMonit Assess,187(2015), 264. https://doi.org/10.1007/s10661-015-4498-2.

    CAS  Article  Google Scholar 

  7. Agyekum, W. A. (2004). Groundwater resources of Ghana with the focus on international shared aquifer boundaries. UNESCO-ISARM International Workshop – Managing shared aquifer resources in Africa. B. Appelgreen. Tripoli, Lybia, June 2002. (No. 8). IHP-VI Series on groundwater no.8. Lybia.

  8. Akiti, T. T. (1980). Etude Geochimque et isotopique de quelques aquifere du Ghana.PhD Dissertation. Universitie de Paris-Sud., Paris.

  9. Akiti, T. T. (1982). Nitrate levels in some granitic aquifers from Ghana. In impact of agricultural activities on groundwater. Prague Czechoslovakia: International Symposium IAH.

    Google Scholar 

  10. Anayah, F., & Kaluarachchi, J. J. (2009). Groundwater resources of Northern Ghana: Initial assessment of data availability. Logan: Utah State University.

    Google Scholar 

  11. Anku, Y. S., Banoeng-Yakubo, B., Asiedu, D. K., & Yidana, S. M. (2008). Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana. Environmental Geology,58(5), 989–997. https://doi.org/10.1007/s00254-008-1578-4.

    CAS  Article  Google Scholar 

  12. Anornu, G., Gibrilla, A., & Adomako, D. (2017). Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ15N, δ18O-NO3 and 3H). Science of Total Environment,603–604, 687–698.

    Article  Google Scholar 

  13. Appelo, C. A. J., & Postma, D. (1996a). Carbonate and carbon dioxide. In Geochemistry, groundwater and pollution (Hardbound, pp. 89–140). Rotterdam: A.A. Balkema.

  14. Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices,2014, 1–37. https://doi.org/10.1155/2014/252148.

    Article  Google Scholar 

  15. Baalousha, H. (2010). Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand. Agricultural Water Management,97(2), 240–246. https://doi.org/10.1016/j.agwat.2009.09.013.

    Article  Google Scholar 

  16. Cartwright, I., Weaver, T. R., Fulton, S., Nichol, C., Reid, M., & Cheng, X. (2004). Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Applied Geochemistry,19(8), 1233–1254. https://doi.org/10.1016/j.apgeochem.2003.12.006.

    CAS  Article  Google Scholar 

  17. Chapman, D., & Kimstash, V. (1996). Selection of water quality variables. In D. Chapman (Ed.), Water Quality Assessments: A guide to the use of biota, sediments and water in environmental monitoring (Second, p. 653). UNESCO/ WHO/ UNEP.

  18. Chilton, P. J., & Foster, S. S. D. (1995). Hydrogeological characterisation and water-supply potential of basement aquifers in tropical Africa. Hydrogeology Journal,3(1), 36–49.

    Article  Google Scholar 

  19. Chitsazan, M., Aghazadeh, N., & Mirzaee, Y. (2019). Hydrochemical characteristics and the impact of anthropogenic activity on groundwater quality in suburban area of Urmia city, Iran. Environment, Development, and Sustainability,21, 331.

    Article  Google Scholar 

  20. Drever, J. I. (1982). weathering and water chemistry: I. Principles—-the statistical approach. In The geochemistry of natural waters (pp. 157–160). Englewood Cliffs: Printice Hall, Inc. Englewood Cliffs.

  21. Elangovan, N. S., Lavanya, V., & Arunthathi, S. (2017). Assessment of groundwater contamination in a suburban area of Chennai, Tamil Nadu, India. Environment, Development and Sustainability.

  22. Eriksson, E. (1985). Chemical processes in the water cycle. In Principles and applications of hydrochemistry (1st ed., pp. 79–87). New York: Chapman and Hall Ltd.

  23. Farid, I., Trabelsi, R., Zouari, K., & Beji, R. (2013). Geochemical and isotopic study of surface and groundwaters in Ain Bou Mourra basin, central Tunisia. Quaternary International,303, 210–227. https://doi.org/10.1016/j.quaint.2013.04.021.

    Article  Google Scholar 

  24. Fisher, R. S., & Mullican, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal,5(2), 4–16. https://doi.org/10.1007/s100400050102.

    Article  Google Scholar 

  25. Freeze, R. A., & Cherry, J. A. (1979). Chemical evolution of natural groundwater. Groundwater (pp. 238–297). New Jersey: Printice Hall, Inc., Englewood Cliffs.

    Google Scholar 

  26. Freeze, R. A., & Cherry, J. A. (1979b). Chemical properties and principles. In Groundwater (p. 96). New Jersey: Printice Hall, Inc. Englewood Cliffs.

  27. Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology,159(1–4), 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5.

    CAS  Article  Google Scholar 

  28. Ghana Geological Survey (GGS). (2009). Geological map of Ghana—scale 1:1 000 000. (Accra, Republic of Ghana): Geological Survey Department (GSD).

  29. Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science,170, 1088–1090.

    CAS  Article  Google Scholar 

  30. Gibrilla, A., Bam, E. K. P., Adomako, D., Ganyaglo, S., Osae, S., Akiti, T. T., et al. (2011). Application of water quality index (wqi) and multivariate analysis for groundwater quality assessment of the Birimian and cape coast Granitoid complex: Densu river basin of Ghana. Water Quality, Exposure and Health,3(2), 63–78. https://doi.org/10.1007/s12403-011-0044-9.

    CAS  Article  Google Scholar 

  31. Golchin, I., & Azhdary Moghaddam, M. (2016). Hydro-geochemical characteristics and groundwater quality assessment in Iranshahr plain aquifer, Iran. Environmental Earth Sciences,75(4), 317. https://doi.org/10.1007/s12665-015-5077-0.

    CAS  Article  Google Scholar 

  32. Han, X., Guo, Q., Liu, C., Fu, P., Strauss, H., Yang, J., et al. (2016). Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China. Scientific Reports,6(1), 29958. https://doi.org/10.1038/srep29958.

    CAS  Article  Google Scholar 

  33. Hengl, T. (2007). A practical guide to geostatistical mapping of environmental variables. JRC scientific and technical reports. Luxembourg: European Commission.

    Google Scholar 

  34. IAEA. (2010). Sampling procedures for isotope hydrology. Water resources programme.

  35. International Atomic Energy Agency (IAEA). (2009). Laser spectroscopic analysis of liquid water samples for stable hydrogen and oxygen isotopes (No. 35). IAEA-TCS-35. Vienna.

  36. Larsson, I. (1984). Groundwater in hard rocks. In Project 8.6 of the hydrological programme (p. 228). UNESCO.

  37. Lê, S., Pagès, J., & Husson, F. (2008). FactoMineR : An R package for multivariate analysis. Journal of Statistical Software,25(1), 1–18.

    Article  Google Scholar 

  38. Martin, N. (2006). Development of a water balance for the Atankwidi catchment, West Africa—A case study of groundwater recharge in a semi-arid climate. (P. L.G.Vlek, M. Denich, C. Martius, and C. Rodgers, Eds.)PhD Dissertation. Technical University of Delft, Delft.

  39. Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and spatio-temporal geostatistical modeling and kriging. (J. S. Hunter, I. M. Johnstone, J. B. Kadane, J. L. Teugels, D. J. Balding, N. A. C. Cressie, S. Weisberg, Eds.). Chichester: Wiley.

  40. Nas, B., & Berktay, A. (2010). Groundwater quality mapping in urban groundwater using GIS. EnvironMonit Assess,160, 215–227. https://doi.org/10.1007/s10661-008-0689-4.

    CAS  Article  Google Scholar 

  41. Nathan, R. R., & Harris, F. R. (1970). The occurrence of groundwater. Ministry of finance and economic planning. Accra: Nathan Consortium.

    Google Scholar 

  42. Nghargbu, K., Schoeneich, K., Ponikowska, I., Latour, T., & Alagbe, S. A. (2014). A survey of Ca and Mg in thermal springs of West Africa: Implications for drinking and bathing therapy. In Calcium and magnesium in groundwater: occurrence and significance for human health (vol. 20144145, pp. 199–212). CRC Press. https://doi.org/10.1201/b17085.

  43. Ofosu, E. A., Van der Zaag, P., van de Giesen, N. C., & Odai, S. N. (2010). Productivity of irrigation technologies in the White Volta Basin. Physics and Chemistry of the Earth,35(13–14), 706–716. https://doi.org/10.1016/j.pce.2010.07.005.

    Article  Google Scholar 

  44. Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The variogram and kriging. Springerbriefs in agriculture. London: Springer International Publishing.

    Google Scholar 

  45. Piper, A. M. (1944) A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union, 25(6), 914.

    Article  Google Scholar 

  46. Pomerantsev, A. L. (2014). Principal component analysis (PCA). Chemometrics in excel (pp. 136–146). Hoboken, New Jersey: Wiley.

    Google Scholar 

  47. Sánchez-Martos, F., Jiménez-Espinosa, R., & Pulido-Bosch, A. (2009). Mapping groundwater quality variables using PCA and geostatistics: a case study of Bajo Andarax, southeastern Spain. Hydrological Sciences Journal,46(2), 227–242. https://doi.org/10.1080/02626660109492818.

    Article  Google Scholar 

  48. Schoeller, H. (1965). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development (pp. 54–83). UNESCO.

  49. SNC-Lavalin/INRS. (2011). Hydrogeological assessment project of the northern regions of Ghana (HAP). Final Technical Report (Vol. I).

  50. Soil Research Institute (S.R.I). (1964). Navrongo-Bawku area vegetation and land-use map-scale 1:250,000. Kumasi: Survey Division, Accra.

    Google Scholar 

  51. Stigter, T. Y., Ribeiro, L., & Carvalho Dill, A. M. M. (2006). Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies-two Portuguese case studies. Journal of Hydrology,327(3–4), 578–591.

    Article  Google Scholar 

  52. Sundaram, B., Feitz, J. A., Caritat, D. P., Plazinska, A., Brodie, S. R., Coram, J., et al. (2009). Groundwater sampling and analysis-a field guide. Canberra: Geoscience Australia.

    Google Scholar 

  53. Ugochukwu, U. C., & Ojike, C. (2019). Assessment of the groundwater quality of a highly populated district in Enugu State of Nigeria. Environment, Development and Sustainability.

  54. World Health Organization. (2011). Guidelines for drinking-water quality. World Health Organization 2011. Geneva 27: WHO Press, World Health Organization.

  55. World Health Organization (WHO). (2004). Guidelines for drinking-water quality (3rd ed., vol. 1). Geneva: World Health Organization.

    Google Scholar 

  56. Younie, M. F., Burton, D. L., Kachanoski, R. G., Beauchamp, E. G., & Gillham, R. W. (1996). Impact of livestock manure and fertilizer application on nitrate contamination of groundwater. RAC Project No. 488G. Ontario: Ontario Ministry of Environment and Energy.

Download references


In uttermost sincerity, the authors would like to thank the staff of the Nuclear Chemistry and Environmental Research Centre, NNRI-GAEC. Finally, we additionally wish to thank the Editor in chief, editor and reviewers for their remarks and suggestions that greatly improved the manuscript.

Author information



Corresponding author

Correspondence to Dickson Abdul-Wahab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1481 kb)

Supplementary file2 (DOCX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdul-Wahab, D., Adomako, D., Abass, G. et al. Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana. Environ Dev Sustain (2020). https://doi.org/10.1007/s10668-020-00815-w

Download citation


  • Hydrogeochemistry
  • Principal component analysis
  • GIS
  • Stable isotopes (δ18O and δ2H)
  • Ghana