GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain

Abstract

This contribution analyses the Common Agricultural Policy (CAP) and focuses on agricultural emissions in Spain regarding sociodemographic characteristics (age and sex). Spanish CAP covers emissions regulation based on the application of agriculture management according to the EU-ETS and agricultural management (soil and energy). The analysis of the Spanish legal rules and policy identified empirical environmental attitudes as provided by the EUROSTAT and MINETUR databases between 1990 and 2013. The developed empirical–analytical GARCH model measures the impact between the soil and energy management indicators per capita based on CAP (as independent variables) and emissions per capita (as dependent variable). The selected criteria of the models are sociodemographic variables corresponding to employee in agriculture: interval of age and sex (total, men and women who work in agriculture). The research findings demonstrate high significance between emissions per age interval, sex and total population, and fertilizers, herbicides and non-renewable energy or gases consumption. The CAP’s proposed use of new machinery per capita does not influence directly the reduction of emissions. The model provides a good estimation for discussion about future policy trends of EU’s long-term objectives for Rural Development Policy related to CAP principles (i.e. fertilizers, pesticides, land use and energy consumption in crops), the impact of machinery in agriculture and the open debate of extending work life in agricultural older population.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    World Meteorological Organization (WMO).

  2. 2.

    George’s theorem argues that the natural resources belong equally to all; therefore, land rent should be shared equally by people. Hence, he introduces the concept of the economic tax based on rents of the natural resources due to the allocation land. According to Stiglitz, this theorem is “[…] the single tax to finance the public good and also externalities such as carbon emissions […]” (Stiglitz 2010).

  3. 3.

    Data for transport were available only for EU-27 and only for the years from 2005 to 2010.

  4. 4.

    Fertilizers include nitrogen, phosphorus, phosphate, potassium and potash.

  5. 5.

    Pesticides include herbicides, fungicides, bactericides and insecticides.

  6. 6.

    Agriculture and agricultural energy management include total of new tractors, tillers and cereal harvesters, consumption of energy from coals, fossil fuel oils, gases resources and non-renewable electrical resources.

  7. 7.

    Agricultural management evolves farmers’ practices to adapt land use and production practices in order to contribute GHG mitigation, adaptation to climate change and to improve the environment (OECD 2012).

  8. 8.

    See congress celebrated in Zafra, on 29 and 31 May 2019: https://www.mapa.gob.es/es/pac/la-arquitectura-verde-de-la-PAC-POST-2020-eco-esquemas/.

References

  1. Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., & Vallejo, A. (2013). The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems and Environment, 164, 32–52. https://doi.org/10.1016/j.agee.2012.09.006.

    CAS  Article  Google Scholar 

  2. Agulló-Tomás, M. S. (2000). Mayores, actividad y trabajo en el proceso de envejecimiento y jubilación: una aproximación psico-sociológica. Madrid: IMSERSO. Retrieved on January 10, 2019 from: https://www.imserso.es/InterPresent2/groups/imserso/documents/binario/436mayoresacttrab.pdf.

  3. Albiac, J., Kahil, T., Notivol, E., & Calvo, E. (2017). Agriculture and climate change: Potential for mitigation in Spain. Science of the Total Environment, 592, 495–502. https://doi.org/10.1016/j.scitotenv.2017.03.110.

    CAS  Article  Google Scholar 

  4. Aleixandre-Benavent, R., Aleixandre-Tudó, J. L., Castelló-Cogollos, L., & Aleixandre, J. L. (2017). Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). Journal of Cleaner Production, 147, 406–418. https://doi.org/10.1016/j.jclepro.2017.01.112.

    Article  Google Scholar 

  5. Altieri, M. A. (1995). Agroecology: The science of sustainable agriculture. Boca Raton: Westview Press.

    Google Scholar 

  6. Apergis, N., & Payne, J. E. (2017). Per capita carbon dioxide emissions across US states by sector and fossil fuel source: Evidence from club convergence tests. Energy Economics, 63, 365–372. https://doi.org/10.1016/j.eneco.2016.11.027.

    Article  Google Scholar 

  7. Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Global Environmental Change, 37, 43–55. https://doi.org/10.1016/j.gloenvcha.2015.12.004.

    Article  Google Scholar 

  8. Bento, J. P. C., & Moutinho, V. (2016). CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. Renewable and Sustainable Energy Reviews, 55, 142–155. https://doi.org/10.1016/j.rser.2015.10.151.

    Article  Google Scholar 

  9. Berghmans, N., Chèze, B., Alberola, E. & Chevallier, J. (2014). The CO2 emissions of the European power sector: Economic drivers and the climate-energy policies’ contribution. In CDC climat research working paper. CDC climat. Retrieved from: https://www.i4ce.org/download/the-co2-emissions-of-the-european-power-sector-economic-drivers-and-the-climate-energy-policies-contribution/.

  10. Boden, T. A., Marland, G. & Andres, R. J. (2010). Global, regional, and national fossil-fuel CO2 emissions. Oak Ridge, Tenn., USA: Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S. Department of Energy.

  11. Böhringer, C., Koschel, H., & Moslener, U. (2008). Efficiency losses from overlapping regulation of EU carbon emissions. Journal of Regulatory Economics, 33, 299–317. https://doi.org/10.1007/s11149-007-9054-8.

    Article  Google Scholar 

  12. Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. The Journal of Political Economy, 96(1), 116–131. https://doi.org/10.1086/261527.

    Article  Google Scholar 

  13. Boody, G., Vondracek, B., Andow, D. A., Krinke, M., Westra, J., Zimmerman, J., et al. (2005). Multifunctional agriculture in the United States. BioScience, 55(1), 27–38. https://doi.org/10.1641/0006-3568(2005)055%5b0027:MAITUS%5d2.0.CO;2.

    Article  Google Scholar 

  14. Chen, S., Chen, X., & Xu, J. (2016). Impacts of climate change on agriculture: Evidence from China. Journal of Environmental Economics and Management, 76, 105–124. https://doi.org/10.1016/j.jeem.2015.01.005.

    Article  Google Scholar 

  15. Cole, M. A., & Neumayer, E. (2004). Examining the impact of demographic factors on air pollution. Population and Environment, 26, 5–21. https://doi.org/10.1023/B:POEN.0000039950.85422.eb.

    Article  Google Scholar 

  16. COM. (2002). Towards sustainable farming. A mid-term review of the common agricultural policy [Online]. Retrieved on March 6, 2017 from: https://ec.europa.eu/commission/presscorner/detail/en/IP_02_1026.

  17. COM. (2003). Directive 2003/87/EC of the European parliament and of the council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC. Paris.

  18. COM. (2011). Communication from the Commission to the European Parliament, The council, The European Economic and Social Committee and the Committee of the Regions. A Roadmap for moving to a competitive low carbon economy in 2050 COM/2011/0112 final ed.

  19. COM. (2012a). Council Regulation (EC) No 1698/2005 of 20 September 2005 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and Amending act(s): Regulation (EC) No 1463/2006; Regulation (EC) No 1944/2006; Regulation (EC) No 2012/2006; Regulation (EC) No 146/2008; Regulation (EC) No 74/2009; Regulation (EC) No 473/2009; Regulation (EC) No 1312/2011.

  20. COM. (2012b). The common agriculture policy: A story to be continued. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  21. COM. (2013). Overview of CAP reform 20142020 [Online]. Retrieved on March 6, 2017 from: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agri-policy-perspectives-brief-05_en.pdf.

  22. COM. (2014a). Climate action. Allowances and caps [Online]. Retrieved on February 20, 2019 from: http://ec.europa.eu/clima/policies/ets/.

  23. COM. (2014b). Climate action. International carbon market [Online]. Retrieved on February 15, 2019 from: http://ec.europa.eu/clima/policies/ets/.

  24. COM. (2014c). Climate action. National allocation plans [Online]. Retrieved on February 21, 2019 from: http://ec.europa.eu/clima/policies/ets/.

  25. COM. (2015a). The history of the CAP [Online]. Retrieved on January 12, 2017 from: http://ec.europa.eu/agriculture/cap-history/index_en.htm.

  26. COM. (2015b). Policy overview 20142020 [Online]. Retrieved on January 20, 2017 from: http://enrd.ec.europa.eu/enrd-static/policy-in-action/cap-towards-2020/rdp-programming-2014-2020/policy-overview/en/policy-overview_en.html.

  27. Coyle, C., Creamer, R. E., Schulte, R. P., O’Sullivan, L., & Jordan, P. (2016). A functional land management conceptual framework under soil drainage and land use scenarios. Environmental Science and Policy, 56, 39–48. https://doi.org/10.1016/j.envsci.2015.10.012.

    Article  Google Scholar 

  28. Cramer, J. C., & Cheney, R. P. (2000). Lost in the ozone: Population growth and ozone in California. Population and Environment, 21, 315–338. https://doi.org/10.1007/BF02436134.

    Article  Google Scholar 

  29. Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C., & Vandenbergh, M. P. (2009). Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proceedings of the National Academy of Sciences, 106(44), 18452–18456. https://doi.org/10.1073/pnas.0908738106.

    Article  Google Scholar 

  30. EEA. (2014). EEA greenhouse gas—data viewer based on National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism. Retrieved on September 15, 2019 from: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer.

  31. Egenhofer, C. (2007). The making of the EU emissions trading scheme: Status, prospects and implications for business. European Management Journal, 25, 453–463. https://doi.org/10.1016/j.emj.2007.07.004.

    Article  Google Scholar 

  32. EUROSTAT. (2016). Database [Online]. Retrieved on March 2, 2017 from: http://ec.europa.eu/eurostat/data/database.

  33. Fagodiya, R. K., Pathak, H., Meena, B. L., Meena, R. K., & Nagdev, R. (2017). Need to estimate the net global warming potential of nitrogenous fertilizers. Adv Plants Agric Res, 6(4), 00220. https://doi.org/10.15406/apar.2017.06.00220.

    Article  Google Scholar 

  34. Fellmann, T., Witzke, P., Weiss, F., Van Doorslaer, B., Drabik, D., Huck, I., et al. (2018). Major challenges of integrating agriculture into climate change mitigation policy frameworks. Mitigation and Adaptation Strategies for Global Change, 23(3), 451–468. https://doi.org/10.1007/s11027-017-9743-2.

    Article  Google Scholar 

  35. Gaffin, S. R., & O’Neill, B. C. (1997). Population and global warming with and without CO2 targets. Population and Environment, 18, 389–413. https://doi.org/10.1007/BF02208514.

    Article  Google Scholar 

  36. Gathorne-Hardy, A. (2016). The sustainability of changes in agricultural technology: The carbon, economic and labour implications of mechanisation and synthetic fertiliser use. Ambio, 45, 1–10. https://doi.org/10.1007/s13280-016-0786-5.

    CAS  Article  Google Scholar 

  37. George, H. (1879). Progress and poverty. New York: E.P. Dutton & Company.

    Google Scholar 

  38. Gómez-Limón, J. A., Picazo-Tadeo, A. J., & Martínez, E. R. (2008). Agricultura, desarrollo rural y sostenibilidad medioambiental. CIRIEC-ESPAÑA, 61, 103–126.

    Google Scholar 

  39. Gorman, M., Mannion, J., Kinsella, J., & Bogue, P. (2001). Connecting environmental management and farm household livelihoods: The rural environment protection scheme in Ireland. Journal of Environmental Policy and Planning, 3(2), 137–147. https://doi.org/10.1002/jepp.76.

    Article  Google Scholar 

  40. Heilig, G. K. (1994). The greenhouse gas methane (CH 4): Sources and sinks, the impact of population growth, possible interventions. Population and Environment, 16, 109–137. https://doi.org/10.1007/BF02208779.

    Article  Google Scholar 

  41. Holm, L., & Halkier, B. (2009). EU food safety policy. European Societies, 11(4), 473–493. https://doi.org/10.1080/14616690802592589.

    Article  Google Scholar 

  42. Huong, N. T. L., Bo, Y. S., & Fahad, S. (2019). Economic impact of climate change on agriculture using Ricardian approach: A case of northwest Vietnam. Journal of the Saudi Society of Agricultural Sciences, 18(4), 449–457. https://doi.org/10.1016/j.jssas.2018.02.006.

    Article  Google Scholar 

  43. Jogerson, A. K., & Clark, B. (2010). Assessing the temporal stability of the population/environment relationship in comparative perspective: A cross-national panel study of carbon dioxide emissions, 1960–2005. Population and Environment, 32, 27–41. https://doi.org/10.1007/s11111-010-0117-x.

    Article  Google Scholar 

  44. Kalkhoran, S. S., Pannell, D. J., Thamo, T., White, B., & Polyakov, M. (2019). Soil acidity, lime application, nitrogen fertility, and greenhouse gas emissions: Optimizing their joint economic management. Agricultural Systems, 176, 102684. https://doi.org/10.1016/j.agsy.2019.102684.

    Article  Google Scholar 

  45. Klein, T., Holzkämper, A., Calanca, P., & Fuhrer, J. (2014). Adaptation options under climate change for multifunctional agriculture: A simulation study for western Switzerland. Regional Environmental Change, 14(1), 167–184. https://doi.org/10.1007/s10113-013-0470-2.

    Article  Google Scholar 

  46. Leakey, R. R. (2012). Multifunctional agriculture and opportunities for agroforestry: implications of IAASTD. In P. K. Ramachandran Nair & D. Garrity (Eds.), Agroforestry-the future of global land use (pp. 203–214). New York: Springer.

    Google Scholar 

  47. Liddle, B. (2013). Consumption-driven environmental impact and age structure change in OECD countries: A cointegration-STIRPAT analysis. Demographic Research, 24, 749–770. https://doi.org/10.4054/DemRes.2011.24.30.

    Article  Google Scholar 

  48. Liddle, B. (2014). Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses. Population and Environment, 35(3), 286–304. https://doi.org/10.1007/s11111-013-0198-4.

    Article  Google Scholar 

  49. Liddle, B., & Lung, S. (2010). Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Population and Environment, 31(5), 317–343. https://doi.org/10.1007/s11111-010-0101-5.

    Article  Google Scholar 

  50. Mansholt, S. L. (1952). Toward European integration: Beginnings in agriculture. Foreign Affairs, 31(1), 106–113. https://doi.org/10.2307/20030945.

    Article  Google Scholar 

  51. Maraseni, T. N. (2009). Should agriculture be included in an emissions trading system? The evolving case study of the Australian Emissions Trading Scheme. International Journal of Environmental Studies, 66, 689–704. https://doi.org/10.1080/00207230903299364.

    Article  Google Scholar 

  52. Martin, R., Muûls, M., De Preux, L. B., & Wagner, U. J. (2014). Industry compensation under relocation risk: A firm-level analysis of the EU emissions trading scheme. American Economic Review, 104(8), 2482–2508. https://doi.org/10.1257/aer.104.8.2482.

    Article  Google Scholar 

  53. Meijide, A., Gruening, C., Goded, I., Seufert, G., & Cescatti, A. (2017). Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems and Environment, 238, 168–178. https://doi.org/10.1016/j.agee.2016.08.017.

    CAS  Article  Google Scholar 

  54. Menz, T., & Kühling, J. (2011). Population aging and environmental quality in OECD countries: Evidence from sulfur dioxide emissions data. Population and Environment, 33(1), 55–79. https://doi.org/10.1007/s11111-011-0132-6.

    Article  Google Scholar 

  55. Menz, T., & Welsch, H. (2012). Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects. Energy Economics, 34(3), 842–849. https://doi.org/10.1016/j.eneco.2011.07.016.

    Article  Google Scholar 

  56. Meul, M., Nevens, F., Reheul, D., & Hofman, G. (2007). Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agriculture, Ecosystems and Environment, 119(1–2), 135–144. https://doi.org/10.1016/j.agee.2006.07.002.

    Article  Google Scholar 

  57. Meyerson, F. A. (1998). Population, carbon emissions, and global warming: The forgotten relationship at Kyoto. Population and Development Review. https://doi.org/10.2307/2808124.

    Article  Google Scholar 

  58. MINETUR. (2016). Database [Online]. Retrieved on March 21, 2019 from: https://sedeaplicaciones.minetur.gob.es/Badase/BadasiUI/lstSeriesInformesPostBack.aspx.

  59. Ministry of Agriculture, Fisheries and Food (2017). Capítulo 5. Demografía y asepectos sociales de agricultura y alimentación. In: Anuario de estadística 2018. Retrieved on February 12, 2019 from: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2018/default.aspx?parte=1&capitulo=05.

  60. OECD. (2001). Multifunctionality: Towards an analytical framework. Paris: OECD Publishing. https://doi.org/10.1787/9789264192171-en.

    Google Scholar 

  61. OECD. (2012). Farmer behaviour, agricultural management and climate change. Paris: OECD Publishing. https://doi.org/10.1787/9789264167650-en.

    Google Scholar 

  62. Okada, A. (2012). Is an increased elderly population related to decreased CO2 emissions from road transportation? Energy policy, 45, 286–292. https://doi.org/10.1016/j.enpol.2012.02.033.

    Article  Google Scholar 

  63. Pao, H.-T., & Tsai, C.-M. (2011). Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil. Energy, 36, 2450–2458. https://doi.org/10.1016/j.energy.2011.01.032.

    Article  Google Scholar 

  64. Papanicolaou, T. N., Wacha, K. M. & Wilson, C. (2013). Exploring the role of multifunctional agriculture on the future of agriculture and rural development. Leopold center completed grant reports. 424. Retrieved from: https://lib.dr.iastate.edu/leopold_grantreports/424.

  65. Patiño, L. I., Padilla, E., Alcántara, V., & Raymond Bara, J. L. (2019). The relation of GDP per capita with energy and CO2 emissions in Colombia. Retrieved on February 16, 2019 from: https://www.recercat.cat/handle/2072/364986.

  66. Paustian, K., Cole, C. V., Sauerbeck, D., & Sampson, N. (1998). CO2 mitigation by agriculture: An overview. Climatic Change, 40, 135–162. https://doi.org/10.1023/A:1005347017157.

    CAS  Article  Google Scholar 

  67. Pellizzoni, L. (2005). Trust, responsibility and environmental policy. European Societies, 7(4), 567–594. https://doi.org/10.1080/14616690500194118.

    Article  Google Scholar 

  68. Pope, J., Bond, A., Hugé, J., & Morrison-Saunders, A. (2017). Reconceptualising sustainability assessment. Environmental Impact Assessment Review, 62, 205–215. https://doi.org/10.1016/j.eiar.2016.11.002.

    Article  Google Scholar 

  69. Schulte, R. P., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O’Donoghue, C., et al. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science and Policy, 38, 45–58. https://doi.org/10.1016/j.envsci.2013.10.002.

    Article  Google Scholar 

  70. Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: Evidence from pooled cross-country data. Ecological Economics, 44(1), 29–42. https://doi.org/10.1016/S0921-8009(02)00223-9.

    Article  Google Scholar 

  71. Spellman, F. R. (2015). Handbook of environmental engineering. New York: CRC Press.

    Google Scholar 

  72. Stiglitz, J. E. (2010). Principles and guidelines for deficit reduction. The Roosevelt Institute. https://doi.org/10.2202/1553-3832.1741.

    Article  Google Scholar 

  73. Stout, B. A. (1984). Energy use and management in agriculture. North Scituate: Breton Publishers.

    Google Scholar 

  74. Tucker, M. (1995). Carbon dioxide emissions and global GDP. Ecological Economics, 15(3), 215–223. https://doi.org/10.1016/0921-8009(95)00045-3.

    Article  Google Scholar 

  75. Tung, Y. T., & Pai, T. Y. (2015). Water management for agriculture, energy, and social security in Taiwan. CLEAN Soil, Air, Water, 43, 627–632. https://doi.org/10.1002/clen.201300275.

    CAS  Article  Google Scholar 

  76. UN. (1998). Kyoto protocol to the United Nations framework convention on climate change. Retrieved on February 27, 2017 from: https://unfccc.int/resource/docs/convkp/kpeng.pdf.

  77. Vlachou, A. (2014). The European Union’s emissions trading system. Cambridge Journal of Economics, 38, 127–152. https://doi.org/10.1093/cje/bet028.

    Article  Google Scholar 

  78. White, P. J., Crawford, J. W., Díaz Álvarez, M. C., & García Moreno, R. (2014). Soil management for sustainable agriculture 2013. Applied and Environmental Soil Science. https://doi.org/10.1155/2014/536825.

    Article  Google Scholar 

  79. WMO. (2014). Record Greenhouse Gas Levels Impact Atmosphere and Oceans. In Press release number 1002 of the World meteorological organization. Retrieved from: https://public.wmo.int/en/media/press-release/no-1002-record-greenhouse-gas-levels-impact-atmosphere-and-oceans.

  80. Yu, Y., Deng, Y., & Chen, F. (2017). Impact of population aging and industrial structure on CO2 emissions and emissions trend prediction in China. Atmospheric Pollution Research, 9(3), 446–454. https://doi.org/10.1016/j.apr.2017.11.008.

    CAS  Article  Google Scholar 

  81. Zagheni, E. (2011). The leverage of demographic dynamics on carbon dioxide emissions: Does age structure matter? Demography, 48, 371–399. https://doi.org/10.1007/s13524-010-0004-1.

    Article  Google Scholar 

  82. Zhang, P., Zhang, J., & Chen, M. (2017). Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. Journal of Environmental Economics and Management, 83, 8–31. https://doi.org/10.1016/j.jeem.2016.12.001.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vanesa Zorrilla-Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zorrilla-Muñoz, V., Petz, M. & Agulló-Tomás, M.S. GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain. Environ Dev Sustain 23, 4675–4697 (2021). https://doi.org/10.1007/s10668-020-00794-y

Download citation

Keywords

  • GHG
  • Agriculture
  • Sociodemographic factors (sex and age)
  • Agricultural machinery
  • Emissions
  • Soil and energy management