Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in Buffalo and Tyume Catchments, Eastern Cape, South Africa

Abstract

High variability in precipitation has affected streamflow across different catchments especially in semi-arid environments with devastating effects on ecosystem services and functioning. Information on the state of interdependency and spatio-temporal precipitation attributes of the catchments is essential for ecosystem services sustainability especially in the semi-arid environments. A statistical hybrid approach using linearity, stochastic behaviour, and elasticity testing was explored from the 1989 to 2016 datasets for Tyume and Buffalo catchments case studies. To this end, consistency, sensitivity, and trend analysis revealed a spatio-temporal variation between the catchments. For instance, there is consistency in flow double-mass curve. Mann–Kendall test reveals significant increase in winter stream flow trend (Buffalo, Z = 0.328, p value = 0.007; and Tyume, Z = 0.354, p value = 0.004), with a corresponding increase in the Buffalo winter rainfall (Z = 0.354, p value = 0.004). Parde coefficient plots and sensitivity analysis reveal streamflow dependence on rainfall, hydrological response, and spatial difference to climatic variability for Buffalo (εp = 0.96) and Tyume (εp = 1.89). In general, hydrological viability of Buffalo catchment over the conservative attribute of Tyume catchment is revealed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Source Johnson et al. (2006), according to Palmer (1983) time scale

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Statement

The dataset used in this study are available in the South Africa weather Service (www.weathersa.co.za/) and Department of Water Affairs repository (www.dwa.gov.za/Hydrology). All data generated during this study are included in this work.

References

  1. Ahmad, N. H., & Deni, S. M. (2013). Homogeneity test on daily rainfall series for Malaysia. Matematika, 29, 141–150.

    Google Scholar 

  2. Alemayehu, A., & Bewket, W. (2017). Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler: Series A, Physical Geography, 99(2), 85–101.

    Article  Google Scholar 

  3. Amo-Boateng, M., Li, Z., & Guan, Y. (2014). Inter-annual variation of streamflow, precipitation and evaporation in a small humid watershed (Chengcun Basin, China). Chinese Journal of Oceanology and Limnology, 32(2), 455.

    CAS  Article  Google Scholar 

  4. Arnell, N. W. (2003). Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain. Journal of Hydrology, 270(3–4), 195–213.

    Article  Google Scholar 

  5. Bormann, H. (2010). Runoff regime changes in German rivers due to climate change. Erdkunde, 64(3), 257–279.

    Article  Google Scholar 

  6. Brown, C., Joubert, A., Tlou, T., Birkhead, A., Marneweck, G., Paxton, B., et al. (2018). The Pongola Floodplain, South Africa—Part 2: Holistic environmental flows assessment. Water SA, 44(4), 746–759.

    Google Scholar 

  7. Burn, D. H., & Elnur, M. A. H. (2002). Detection of hydrologic trends and variability. Journal of Hydrology, 255(1–4), 107–122.

    Article  Google Scholar 

  8. Cai, Y., Jin, C., Wang, A., Guan, D., Wu, J., Yuan, F., et al. (2016). Comprehensive precipitation evaluation of TRMM 3B42 with dense rain gauge networks in a mid-latitude basin, northeast, China. Theoretical and Applied Climatology, 126(3–4), 659–671.

    Article  Google Scholar 

  9. Chien, H., Yeh, P. J. F., & Knouft, J. H. (2013). Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. Journal of Hydrology, 491, 73–88.

    Article  Google Scholar 

  10. Chiew, F. H. S. (2006). Estimation of rainfall elasticity of streamflow in Australia. Hydrological Sciences Journal, 51(4), 613–625. https://doi.org/10.1623/hysj.51.4.613.

    Article  Google Scholar 

  11. Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3), 422–433.

    Article  Google Scholar 

  12. Djuric, P. M., & Míguez, J. (2010). Assessment of nonlinear dynamic models by Kolmogorov-Smirnov statistics. IEEE Transactions on Signal Processing, 58(10), 5069–5079.

    Article  Google Scholar 

  13. DWAF (Department of Water Affair and Forestry). (2010). Eastern Cape Groundwater Plan. Version No 1. The Department of Water Affairs Eastern Cape Office, Port Elizabeth 6000. Version Date: 2010-08-16.

  14. Farajzadeh, J., & Alizabeth, F. (2017). A hybrid linear-nonlinear approach to predict the monthly rainfall over the Urmia Lake watershed using wavelet-SARIMAX-LSSVM conjugated model. Journal of Hydroinformatics, p. jh2017013.

  15. Gao, P., Li, P., Zhao, B., Xu, R., Zhao, G., Sun, W., et al. (2017). Use of double mass curves in hydrologic benefit evaluations. Hydrological Processes, 31(26), 4639–4646.

    Article  Google Scholar 

  16. Gaudry, M. M. C., Gutknecht, D., Parajka, J., Perdigão, R. A., & Blöschl, G. (2017). Seasonality of runoff and precipitation regimes along transects in Peru and Austria. Journal of Hydrology and Hydromechanics, 65(4), 347–358.

    Article  Google Scholar 

  17. Grenfell, S. E., & Ellery, W. N. (2009). Hydrology, sediment transport dynamics and geomorphology of a variable flow river: The Mfolozi River, South Africa. Water SA, 35(3).

  18. Grothmann, T., Petzold, M., Ndaki, P., Kakembo, V., Siebenhüner, B., Kleyer, M., et al. (2017). Vulnerability assessment in African villages under conditions of land use and climate change: Case studies from Mkomazi and Keiskamma. Sustainability, 9(6), 976.

    Article  Google Scholar 

  19. Hall, A. D., & McAleer, M. (1989). A Monte Carlo study of some tests of model adequacy in time series analysis. Journal of Business & Economic Statistics, 7(1), 95–106.

    Google Scholar 

  20. Hughes, D. A., Desai, A. Y., Birkhead, A. L., & Louw, D. (2014). A new approach to rapid, desktop-level, environmental flow assessments for rivers in South Africa. Hydrological Sciences Journal, 59(3–4), 673–687.

    Article  Google Scholar 

  21. Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.D.V., Christie, A.D.M., Roberts, D.L. & Brandl, G., (2006). Sedimentary rocks of the Karoo Supergroup. The Geology of South Africa, pp. 461–499.

  22. Joshi, N., Gupta, D., Suryavanshi, S., Adamowski, J., & Madramootoo, C. A. (2016). Analysis of trends and dominant periodicities in drought variables in India: a wavelet transform based approach. Atmospheric Research, 182, 200–220.

    Article  Google Scholar 

  23. Kahinda, J. M., Meissner, R., & Engelbrecht, F. A. (2016). Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment. Physics and Chemistry of the Earth, Parts A/B/C, 93, 104–118.

    Article  Google Scholar 

  24. Kalra, A., & Ahmad, S. (2011). Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique. Water Resources Research, 47, W05555. https://doi.org/10.1029/2010WR009118.

    Article  Google Scholar 

  25. Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.

    Google Scholar 

  26. Kisi, O., & Ay, M. (2014). Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362–375.

    CAS  Article  Google Scholar 

  27. Liu, Q., & Cui, B. (2011). Impacts of climate change/variability on the streamflow in the Yellow River Basin, China. Ecological Modelling, 222, 268–274.

    Article  Google Scholar 

  28. Liu, M., Xu, X., & Sun, A. (2015). Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors. Journal of Geophysical Research: Atmospheres, 120(13), 6480–6488.

    Google Scholar 

  29. Lobato, I. N., & Velasco, C. (2004). A simple test of normality for time series. Econometric Theory, 20(4), 671–689.

    Article  Google Scholar 

  30. Lumsden, T. G., Schulze, R. E., & Hewitson, B. C. (2009). Evaluation of potential changes in hydrologically relevant statistics of rainfall in southern Africa under conditions of climate change. Water SA., 35(5), 646–656. https://doi.org/10.4314/wsa.v35i5.49190.

    Article  Google Scholar 

  31. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259. http://www.jstor.org/stable/1907187.

  32. Milly, P. C., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347.

    CAS  Article  Google Scholar 

  33. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.

    Article  Google Scholar 

  34. Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21(3), 223–233.

    Article  Google Scholar 

  35. Molle, F., & Wester, P. (2009). River basin trajectories: An inquiry into changing waterscapes. In River basin trajectories: Societies, environment and development, pp. 1–19.

  36. Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.

    Article  Google Scholar 

  37. Munson, K. M., Vogel, R. M., & Durant, J. L. (2018). Climate sensitivity of phosphorus loadings to an urban stream. Journal of the American Water Resources Association (JAWRA). https://doi.org/10.1111/1752-1688.12621.

    Article  Google Scholar 

  38. Neupauer, R. M., Powell, K. L., Qi, X., Lee, D. H., & Villhauer, D. A. (2006). Characterization of permeability anisotropy using wavelet analysis. Water Resources Research, 42(7).

  39. Odiyo, J. O., Makungo, R., & Nkuna, T. R. (2015). Long-term changes and variability in rainfall and streamflow in Luvuvhu River Catchment, South Africa. South African Journal of Science, 111(7–8), 1–9. https://doi.org/10.17159/SAIS2015/20140169.

    Article  Google Scholar 

  40. Olsson, O., Gassmann, M., Wegerich, K., & Bauer, M. (2010). Identification of the effective water availability from streamflows in the Zerafshan river basin, Central Asia. Journal of Hydrology, 390(3), 190–197. https://doi.org/10.1016/j.jhydrol.2010.06.042.

    Article  Google Scholar 

  41. Owolabi, S. T., Madi, K., Kalumba, A. M., & Alemaw, B. F. (2020). Assessment of recession flow variability and the surficial lithology impact: A case study of Buffalo River catchment, Eastern Cape, South Africa. Environmental Earth Sciences. https://doi.org/10.1007/s12665-020-08925-4

    Article  Google Scholar 

  42. Palmer, A. R. (1983). The decade of North American geology 1983 geologic time scale. Geology, 11(9), 503–504.

    Article  Google Scholar 

  43. Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., et al. (1998). Homogeneity adjustments of in situ atmospheric climate data: a review. International Journal of Climatology, 18(13), 1493–1517.

    Article  Google Scholar 

  44. Pohlert T. (2016). Non-parametric trend tests and change-point detection. CC BY-ND.

  45. Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2017). Ensemble climate projections of mean and extreme rainfall over Vietnam. Global and Planetary Change, 148, 96–104.

    Article  Google Scholar 

  46. Roushangar, K., & Alizabeth, F. (2018). Identifying complexity of annual precipitation variation in Iran during 1960–2010 based on information theory and discrete wavelet transform. Stochastic Environmental Research and Risk Assessment, 32(5), 1205–1223.

    Article  Google Scholar 

  47. Roushangar, K., Alizabeth, F., & Nourani, V. (2018). Improving capability of conceptual modeling of watershed rainfall-runoff using hybrid wavelet-extreme learning machine approach. Journal of Hydroinformatics, 20(1), 69–87.

    Article  Google Scholar 

  48. Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of streamflow in the United States. Water Resources Research, 37(6), 1771–1781.

    Article  Google Scholar 

  49. Sang, Y. F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 122, 8–15.

    Article  Google Scholar 

  50. Sayemuzzaman, M., & Jha, M. K. (2014). Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183–194.

    Article  Google Scholar 

  51. Schaake, J. C. (1990). From climate to flow. Climate change and US water resources., 177–206. Hydrologic Services Division, National Weather Service, NOAA Silver Spring, Maryland, USA. ISBN; 0471618381. Record Number: 19911959039. John Wiley and Sons Inc.

  52. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  53. Seoane, R., & López, P. (2007). Assessing the effects of climate change on the hydrological regime of the Limay River basin. GeoJournal, 70(4), 251–256.

    Article  Google Scholar 

  54. Slaughter, A. R., Mantel, S. K., & Hughes, D. A. (2014). Investigating possible climate change and development effects on water quality within an arid catchment in South Africa: A comparison of two models. Intl: Environ Modelling and Software Society (iEMSs).

    Google Scholar 

  55. Tabari, H., Somee, B. S., & Zadeh, M. R. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132–140.

    Article  Google Scholar 

  56. Theil, H. (1950). A rank-invariant method of linear and polynominal regression analysis (Parts 1–3). In Ned. Akad. Wetensch. Proc. Ser. A (Vol. 53, pp. 1397–1412).

  57. Toth, E. (2013). Catchment classification based on characterisation of streamflow and precipitation time series. Hydrology and Earth System Sciences, 17(3), 1149–1159.

    Article  Google Scholar 

  58. Viste, E., Diriba, K., & Sorteberg, A. (2013). Recent drought and precipitation tendencies in Ethiopia. Theoretical and Applied Climatology, 112, 535–551. https://doi.org/10.1007/s00704-012-0746-3.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to South Africa Weather Service and the Department of Water Affairs for assistance with data preparation and release.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Solomon Temidayo Owolabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Owolabi, S.T., Madi, K. & Kalumba, A.M. Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in Buffalo and Tyume Catchments, Eastern Cape, South Africa. Environ Dev Sustain 23, 4236–4251 (2021). https://doi.org/10.1007/s10668-020-00769-z

Download citation

Keywords

  • Hydro-meteorological data
  • Sensitivity analysis
  • Mann–Kendall analysis
  • Parde coefficient plots
  • South Africa