Sugarcane bagasse-facilitated benign synthesis of Cu2O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach

Abstract

The global water situation is highly challenging and requires immediate attention. It is pertinent to explore opportunities in wastewater treatment with an environment friendly route. An efficient method can be explored where biogenic nanoparticles (NPs) synthesized by agricultural waste can further enhance its potential in cleaning the environment. Therefore, a green, surfactant-free and sustainable approach towards the genesis of cuprous oxide (Cu2O) was attempted. Cu2O NPs were synthesized using Fehling’s solution and sugarcane bagasse extract which plays a vital role both as reducing and capping agent. The Cu2O NPs were characterized using Fourier transform infrared and UV–Visible spectroscopy, and their morphology was determined by high-resolution X-ray diffraction, transmission electron microscope and scanning electron microscope analysis. Their optical properties, i.e., band gaps, were calculated, and the catalytic efficiency was studied by carrying out the degradation of organic dyes [methyl orange (MO), methyl blue (MB), methyl red (MR) and Congo red (CR)] present in wastewater via spectrophotometric measurements. Simultaneously, their increasing order of degradation efficiency was found to be MR < CR < MB < MO. The mechanism of degradation of organic dyes on the surface of Cu2O NPs was also proposed. Utilizing the agricultural waste and trapping the reducing property of its polysaccharides components in facilitating the designing of the Cu2O NPs are a novel methodology. The current study envisages a new perspective for the purpose of environmental remediation and novel applications in photocatalysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11

References

  1. Abboud, Y., Saffaj, T., Chagraoui, A., Bouari, A. E., Brouzi, K., Tanane, O., et al. (2014). Biosynthesis, characterization and antimicrobial activity of copperoxide nanoparticles (CONPs) produced using brown alga extract(Bifurcaria bifurcata). Applied Nanoscience, 4, 571–576.

    CAS  Google Scholar 

  2. Abhijeet, M., & Meryam, S. (2013). Rapid biosynthesis of silver nanoparticles using sugarcane bagasse: An industrial waste. Journal of Nanoengineering and Nanomanufacturing, 3(3), 217–219.

    Google Scholar 

  3. Adeleye, A. S., Conway, J. R., Garner, K., Huang, Y., Su, Y., & Keller, A. A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286, 640–662.

    CAS  Google Scholar 

  4. Aguilar, N. M., Cardona, F. A., Estévez, J. O., González, N. R. S., Serrano, J. C. B., & Kuri, U. S. (2018). Controlled biosynthesis of silver nanoparticles using sugar industry waste, and its antimicrobial activity. Journal of Environmental Chemical Engineering, 6(5), 6275–6281.

    CAS  Google Scholar 

  5. Ajabshir, S. Z., Ghasemian, N., & Niasari, M. S. (2020). Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceramics International, 46, 66–73.

    Google Scholar 

  6. Ajabshir, S. Z., Morassaei, M. S., & Niasari, M. S. (2019a). Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Composites: Part B, 176, 643–653.

    Google Scholar 

  7. Ajabshir, S. Z., Morassaei, M. S., & Niasari, M. S. (2019b). Facile synthesis of Nd2Sn2O7–SnO2 nanostructures by novel and environment-friendly approach for the photodegradation and removal of organic pollutants in water. Journal of Environmental Management, 233, 107–119.

    Google Scholar 

  8. Ajabshir, S. Z., & Niasari, M. S. (2015). Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-015-3141-x.

    Article  Google Scholar 

  9. Ajabshir, S. Z., Salehi, Z., & Niasari, M. S. (2018). Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. Journal of Alloys and Compounds, 763, 314–321.

    Google Scholar 

  10. Amrani, M. A., Srikanth, V. S. S., Labhsetwar, N. K., Al- Fatesh, A. S., & Shaikh, H. (2016). Phoenix dactylifera mediated green synthesis of Cu2O particles for arsenite uptake from water. Science and Technology of Advanced Materials, 17(1), 760–768.

    CAS  Google Scholar 

  11. Behera, M., & Giri, G. (2014). Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant. Materials Science-Poland, 32(4), 702–708.

    CAS  Google Scholar 

  12. Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876.

    CAS  Google Scholar 

  13. Bhaumik, A., Shearin, A. M., Patel, R., & Ghosh, K. (2014). Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: Possible future materials for solar energy applications. Physical Chemistry Chemical Physics: PCCP, 16, 11054–11066.

    CAS  Google Scholar 

  14. Bhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019). Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 16, 832.

    CAS  Google Scholar 

  15. Borah, R., Saikia, E., Bora, S. J., & Chetia, B. (2016). On-water synthesis of phenols using biogenic Cu2O nanoparticles without using H2O2. RSC Advances, 6, 100443–100447.

    CAS  Google Scholar 

  16. Borah, R., Saikia, E., Bora, S. J., & Chetia, B. (2017). Banana pulp extract mediated synthesis of Cu2O nanoparticles: An efficient heterogeneous catalyst for the ipso-hydroxylation of arylboronic acids. Tetrahedron Letters, 58, 1211–1215.

    CAS  Google Scholar 

  17. Brillas, E., Carlos, A., & Huitle, M. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. Applied Catalysis, B: Environmental, 166, 603–643.

    Google Scholar 

  18. Buscio, V., Crespi, M., & Bouzán, C. G. (2014). A critical comparison of methods for the analysis of Indigo in dyeing liquors and effluents. Materials, 7, 6184–6193.

    Google Scholar 

  19. Choudhary, B. C., Paul, D., Gupta, T., Tetgure, S. R., Garole, V. J., Borse, A. U., et al. (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesised gold nanoparticles. Journal of Environmental Science, 55, 236–246.

    CAS  Google Scholar 

  20. Derazkol, S. M., Ajabshir, S. Z., & Niasari, M. S. (2017). Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Advanced Powder Technology, 28, 747–754.

    Google Scholar 

  21. Dezheng, W. (2010). Experimental conditions for valid Langmuir–Hinshelwood kinetics. Chinese Journal of Catalysis, 31(8), 972–978.

    Google Scholar 

  22. Dolatkhah, Z., Mohammadkhani, A., Javanshir, S., & Bazgir, A. (2019). Peanut shell as a green biomolecule support for anchoring Cu2O: A biocatalyst for green synthesis of 1,2,3-triazoles under ultrasonic irradiation. BMC Chemistry, 13(97), 1–10.

    CAS  Google Scholar 

  23. Doornkamp, C., & Ponec, V. (2000). The universal character of the Mars and Van Krevelen mechanism. Journal of Molecular Catalysis A: Chemical, 162, 19–32.

    CAS  Google Scholar 

  24. Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971.

    CAS  Google Scholar 

  25. Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes and Pigments, 52(2), 69–78.

    CAS  Google Scholar 

  26. Gopalakrishnan, K., Ramesh, C., Ragunathan, V., & Thamilselvan, M. (2012). Antibacterial activity of Cu2O nanoparticles on E. Coli synthesized from tridax procumbens leaf extract and surface coating with polyaniline. Digest Journal of Nanomaterials and Biostructures, 7(2), 833–839.

    Google Scholar 

  27. Gutierrez, G. R., Senent, F. R., Munoz, A. L., García, A., & Bolanos, J. F. (2014). Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: Binding of water, oil, bile acids, and glucose. Journal of Agriculture and Food Chemistry, 62, 8973–8981.

    Google Scholar 

  28. Ho, W. C. J., Tay, Q., Qi, H., Huang, Z., Li, J., & Chen, Z. (2017). Photocatalytic and adsorption performances of faceted cuprous oxide (Cu2O) particles for the removal of methyl orange (MO) from aqueous media. Molecules, 22(4), 677.

    Google Scholar 

  29. Ince, N. H. (1999). ”Critical” effect of hydrogen peroxide in photochemical dye degradation. Water Research, 33(4), 1080–1084.

    CAS  Google Scholar 

  30. Kankeu, E. F., Waanders, F., & Geldenhuys, M. (2016). Impact of nanoparticles shape and dye property on the photocatalytic degradation activity of TiO2. International Journal of Science and Research (IJSR), 5(11), 528–534.

    Google Scholar 

  31. Khalid, N. R., Liaqat, M., Tahir, M. B., Nabi, G., Iqbal, T., & Niaz, N. A. (2018). The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution. Ceramics International, 44(1), 546–549.

    CAS  Google Scholar 

  32. Knill, C. J., & Kennedy, J. F. (2003). Degradation of cellulose under alkaline conditions. Carbohydrate Polymers, 51, 281–300.

    CAS  Google Scholar 

  33. Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1–8.

    Google Scholar 

  34. Kuriqi, A. (2014). Simulink application on dynamic modeling of biological waste water treatment for aerator tank case. International Journal of Scientific & Technology Research, 3(11), 69–72.

    Google Scholar 

  35. Kuriqi, A., Kuriqi, I., & Poci, E. (2016). Simulink programing for dynamic modelling of activated sludge process: aerator and settler tank case. Fresenius Environmental Bulletin, 25(8), 2891–2899.

    CAS  Google Scholar 

  36. Loh, Y. R., Sujan, D., Rahman, M. E., & Das, C. A. (2013). Sugarcane bagasse: The future composite material—a literature review. Resources, Conservation and Recycling, 75, 14–22.

    Google Scholar 

  37. Martina, B., Katerina, K., Miloslava, R., Jan, G., & Ruta, M. (2009). Oxycellulose: Significant characteristics in relation to its pharmaceutical and medical applications. Advances in Polymer Technology, 28(3), 199–208.

    CAS  Google Scholar 

  38. Morassaei, M. S., Ajabshir, S. Z., & Niasari, M. S. (2016). Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: An efficient photocatalyst for the degradation of methyl orange dye. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-016-5306-7.

    Article  Google Scholar 

  39. Parvez, A. N., Rahaman, M. H., Kim, H. C., & Ahn, K. K. (2019). Optimization of triboelectric energy harvesting from falling water droplet onto wrinkled polydimethylsiloxane-reduced graphene oxide nanocomposite surface. Composites: Part B, 174, 106923.

    CAS  Google Scholar 

  40. Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.

    CAS  Google Scholar 

  41. Ramesh, C., & Gopalakrishnan, K. (2016). Biogenic synthesis of Cu2O nanoparticles using aqueous solutions of Arachishypogaealeaf extracts. MCASJR, 3, 79–87.

    Google Scholar 

  42. Rauf, M. A., & Ashraf, S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151, 10–18.

    CAS  Google Scholar 

  43. Riya, L., & George, M. (2015). Green synthesis of cuprous oxide nanoparticles. International Journal of Advance Research in Science And Engineering (IJARSE), 4(1), 315–322.

    Google Scholar 

  44. Robak, K., & Balcerek, M. (2018). Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology, 56(2), 174–187.

    CAS  Google Scholar 

  45. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255.

    CAS  Google Scholar 

  46. Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A., & Ovelleiro, J. L. (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Research, 32(9), 2721–2727.

    CAS  Google Scholar 

  47. Sarayu, K., & Sandhya, S. (2012). Current technologies for biological treatment of textile wastewater: A review. Applied Biochemistry and Biotechnology, 167(3), 645–661.

    CAS  Google Scholar 

  48. Shahzad, K., Tahir, M. B., & Sagir, M. (2019). Engineering the performance of heterogeneous WO3/fullerene@Ni3B/Ni(OH)2 photocatalysts for hydrogen generation. International Journal of Hydrogen Energy, 44(39), 21738–21745.

    CAS  Google Scholar 

  49. Shelari, P. V., & Katkar, A. S. (2018). Biological synthesis of Cu2O nanoshells and its optical properties. IJCPS, 7(3), 75–80.

    Google Scholar 

  50. Sun, S., Zhang, X., Yang, Q., & Liang, S. (2018). Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Progress in Materials Science, 8, 397.

    Google Scholar 

  51. Tahir, M. B. (2018). Construction of MoS2/CND-WO3 ternary composite for photocatalytic hydrogen evolution. Journal of Inorganic and Organometallic Polymers and Materials, 28(5), 2160–2168.

    CAS  Google Scholar 

  52. Tahir, M. B. (2019). Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation. International Journal of Hydrogen Energy, 44(32), 17316–17322.

    CAS  Google Scholar 

  53. Tahir, M. B., Asiri, A. M., Nabi, G., & Sagir, M. (2019a). Fabrication of heterogeneous photocatalysts for insight role of carbon nanofibre in hierarchical WO3/MoSe2 composite for enhanced photocatalytic hydrogen generation. Ceramics International, 45(5), 5547–5552.

    CAS  Google Scholar 

  54. Tahir, M. B., Kiran, H., & Iqbal, T. (2019b). The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: A review. Environmental Science and Pollution Research, 26(11), 10515–10528.

    CAS  Google Scholar 

  55. Tahir, M. B., Nabi, G., & Khalid, N. R. (2018a). Enhanced photocatalytic performance of visible-light active graphene-WO3 nanostructures for hydrogen production. Materials Science in Semiconductor Processing, 84, 36–41.

    CAS  Google Scholar 

  56. Tahir, M. B., Nabi, G., Khalid, N. R., & Khan, W. S. (2018b). Synthesis of nanostructured based WO3 materials for photocatalytic applications. Journal of Inorganic and Organometallic Polymers, 28(3), 777–782.

    CAS  Google Scholar 

  57. Tahir, M. B., Sagir, M., Zubair, M., Rafique, M., Abbas, I., Shakil, M., et al. (2018c). WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. Journal of Inorganic and Organometallic Polymers and Materials, 28(3), 1107–1113.

    CAS  Google Scholar 

  58. Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica State Solid, 15, 627–637.

    CAS  Google Scholar 

  59. Vaibhav, V., Vijayalakshmi, U., & Roopan, S. M. (2015). Agricultural waste as a source for the production of silica nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, 515–520.

    CAS  Google Scholar 

  60. Velu, M., Lee, J. H., Chang, W. S., Lovanh, N., Park, Y. J., Jayanthi, P., et al. (2017). Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. Biotech, 7, 147.

    Google Scholar 

  61. Viswanathan, B. (2018). Photocatalytic degradation of dyes: An overview. Current Catalysis, 7(1), 1–25.

    Google Scholar 

  62. Wang, Y., Wu, G., Yang, M., & Wang, J. (2013). Competition between Eley–Rideal and Langmuir–Hinshelwood pathways of CO oxidation on Cun and CunO (n = 6, 7) clusters. Journal of Physical Chemistry C, 117, 8767–8773.

    CAS  Google Scholar 

  63. Wang, J. L., & Xu, L. J. (2011). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325.

    Google Scholar 

  64. Wang, B., Xu, M., Chi, C., Wang, C., & Meng, D. (2017). Degradation of methyl orange using dielectric barrier discharge water falling film reactor. Journal of Advanced Oxidation Technologies, 20(2).

  65. Wu, Y., Wang, H., Tu, W., Liu, Y., Tan, Y. Z., Yan, X., et al. (2018). Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p–n heterojunction interfacial effect. Journal of Hazardous Materials, 347(5), 412–422.

    CAS  Google Scholar 

  66. Xiong, L., Xiao, H., Chen, S., Chen, Z., Yi, X., Wen, S., et al. (2014). A fast and simplified synthesis of cuprous oxide nanoparticles: Anneal studies and photocatalytic activity. RSC Advances. https://doi.org/10.1039/C4RA12406E.

    Article  Google Scholar 

  67. Yadav, S., Jain, A., & Malhotra, P. (2019). A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chemistry, 21, 937–955.

    CAS  Google Scholar 

  68. Yaseen, D. A., & Scholz, M. (2018). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16, 1193–1226.

    Google Scholar 

  69. Zeiner, M., Reziæ, I., & Steffan, I. (2007). Analytical methods for the determination of heavy metals in the textile industry. Determination of Heavy Metals in the Textile Industry. Kem India, 56(11), 587–595.

    CAS  Google Scholar 

  70. Zoolfakar, A. S., Rani, R. A., Morfa, A. J., O’Mullane, A. J., & Kalantar-zadeh, K. (2014). Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2, 5247–5270.

    CAS  Google Scholar 

Download references

Acknowledgements

S. Yadav and M. Chauhan appreciatively acknowledge University grants commission, India, for economic support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Priti Malhotra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Chauhan, M., Mathur, D. et al. Sugarcane bagasse-facilitated benign synthesis of Cu2O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach. Environ Dev Sustain 23, 2071–2091 (2021). https://doi.org/10.1007/s10668-020-00664-7

Download citation

Keywords

  • Wastewater treatment
  • Agricultural waste
  • Organic dyes
  • Green synthesis
  • Photocatalyst
  • Cu2O nanoparticles