Evaluation of urban ecological sustainability in arid lands (case study: Yazd-Iran)

Abstract

Nowadays, the world is facing rapid urbanization and increasing desertification. Therefore, urban planning in these regions should be based on comprehensive understanding of the constraints and vulnerabilities of arid lands. In this study, the sustainability condition of a rapidly growing city in a dry landscape, Yazd, Iran, was assessed using a previously developed framework. The framework is based on the conceptual principle of close relations between structure and function and is comprised of three main components and 16 metrics. By evaluating the status and trends of these metrics, and using the analytical hierarchy process method, the score of Yazd sustainability was determined as 0.28 out of 1.0, indicating the city is far from a state of sustainability. Current urban development policies in this region exacerbate unstable conditions. Given the constraints on achieving urban sustainability in arid regions, physical urban development should be aligned with local ecological potential. In the process of urban growth, local knowledge and ecological values in these areas must be protected. Applying this sustainability assessment process in other dryland cities will improve this evaluative framework and help achieve rational principles for sustainable urban development strategies in arid lands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Source Yazd Department of Environment

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Achilleosa, S., Al-Ozairic, E., Alahmad, B., Garshick, E., Neophytou, A. M., Bouhamrai, W., et al. (2019). Acute effects of air pollution on mortality: A 17-year analysis in Kuwait. Environment International, 126, 476–483.

    Google Scholar 

  2. Akbari, M., Ownegh, M., Asgari, H., Sadoddin, A., & Khosravi, H. (2016). Drought monitoring based on the SPI and RDI indices under climate change scenarios (case study: Semi-arid areas of West Golestan Province). Ecopersia, 4, 1585–1602.

    Google Scholar 

  3. Alberti, M. (2005). The effects of urban pattern on ecosystem function. Integration Regional Science Review, 28, 168–190.

    Google Scholar 

  4. Alberti, M., & Marzluff, J. (2004). Ecological resilience in urban ecosystems linking urban patterns to human and ecological functions. Urban Ecosystems, 7(3), 241–265.

    Google Scholar 

  5. Alberti, M., Marzluff, J. M., Shulenberger, E., Gordon, B., Ryan, C., & Zumbrunnen, C. (2003). Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience, 53(12), 1169–1179.

    Google Scholar 

  6. Archsmith, J., Heyes, A., & Saberian, S. (2018). Air quality and error quantity: Pollution and performance in a high-skilled, quality-focused occupation. Journal of the Association of Environmental and Resource Economists, 5, 827–863.

    Google Scholar 

  7. Arid Land and Desert Research Institute, Y. U. (2016). Studying and identification of the sources of dust in Yazd Province. Yazd: Department of Environment.

    Google Scholar 

  8. Arnold, C. L., & Gibbons, J. C. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62, 243.

    Google Scholar 

  9. Baker, L. A., Brazel, A. T., & Westerhoff, P. (2004). Environmental consequences of rapid urbanization in warm, arid lands: Case study of Phoenix, Arizona (USA). In C. Marchettini, A. Brebbia, E. Tiezzi, & L. C. Wadh (Eds.), The sustainable city III, urban regeneration (pp. 155–164). Boston: WIT Press.

    Google Scholar 

  10. Beatley, T. (2010). Biophilic cities: Integrating nature into urban design and planning (2nd None ed. edition ed.). Washington, D.C: Island Press.

  11. Beatley, T., & Peter, N. (2013). Biophilic cities are sustainable, resilient cities. Sustainability, 5, 3328–3345.

    Google Scholar 

  12. Boustani, F. (2008). Sustainable water utilization in arid region of Iran by Qanats. Proceedings of the World Academy of Science, Engineering and Technology, 33, 213–216.

    Google Scholar 

  13. Burkhardt, J., Bayham, J., Wilson, A., Carter, E., Berman, J. D., O’Dell, K., et al. (2019). The effect of pollution on crime: Evidence from data on particulate matter and ozone. Journal of Environmental Economics and Management, 98, 102267.

    Google Scholar 

  14. Chen, Y. H. (2004). Analysis on advantages and disadvantages of large scale, long distance and transbasin diversion. Water Resource and Protection, 59(2), 48–50.

    Google Scholar 

  15. Dadvand, P., Bartoll, X., Basagaña, X., Dalmau-Bueno, A., Martinez, D., Ambros, A., et al. (2016). Green spaces and general health: roles of mental health status, social support, and physical activity. Environment International, 91, 161–167.

    Google Scholar 

  16. Decuyper, M., Chávez, R. O., Copini, P., & Sass, K. (2016). A multi-scale approach toassess the effect of groundwater extraction on Prosopis tamarugo in the Atacama Desert. Arid Environment, 131, 25–34.

    Google Scholar 

  17. Department of Environment, D. o. E._Yazd. (2018). Report of the number of days of Yazd air quality in 20152018. Yazd: Department of Environment-Yazd. https://yazd.doe.ir/Portal/Home/Default.aspx.

  18. Flores, A., Pickett, S., Zipperer, W., Pouyat, R., & Piranid, R. (1998). Adopting a modern ecological view of the metropolitan landscape: The case of a greenspace system for the New York City region. Landscape and Urban Planning, 39, 295–308.

    Google Scholar 

  19. Forman, R. T. (1995). Land mosaics: The ecology of landscapes and regions. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Gidlow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tarvainen, M. P., et al. (2016). Where to put your best foot forward:psychophysiological responses to walking in natural and urban environments. Journal of Environmental Psychology, 45, 22–29.

    Google Scholar 

  21. Grimm, N. B., Grove, J. G., Pickett, S. T., & Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems. BioScience, 50(7), 571–584.

    Google Scholar 

  22. Hammon 1 Consultant Company. (2016). Landuse planning—Yazd province—Natural resources and environment. Yazd: Yazd Management and Planning Organization.

    Google Scholar 

  23. Hartig, T., Mitchell, R., de Vries, S., & Frumkin, H. (2014). Nature and health. Annual Review of Public Health, 35, 207–228.

    Google Scholar 

  24. Hassan, A. G., Fullen, M. A., & Oloke, D. (2019). Problems of drought and its management in Yobe State, Nigeria. Weather and Climate Extremes, 23, 100192.

    Google Scholar 

  25. Hiremath, R. B., Balachandra, P., Kumar, B., Bansode, S. S., & Murali, J. (2013). Indicator-based urban sustainability—A review. Energy for Sustainable Development, 17, 555–563.

    Google Scholar 

  26. Hyewon, L., Kim, H., Yasushi, H., Youn-Hee, L., & Seungmuk, Y. (2013). Effect of Asian dust storms on daily mortality in seven metropolitan cities of Korea. Atmospheric Environment, 79, 510–517.

    Google Scholar 

  27. IPCC, & IPCC. (2014). Climate change 2014. Impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Kremer, P., Haase, A., & Haasec, D. (2019). The future of urban sustainability: Smart, efficient, green or just? Introduction to the special issue. Sustainable Cities and Society, 51, 101761.

    Google Scholar 

  29. Krutmann, J., Morita, A., & Chung, J. H. (2012). Sun exposure: What molecular photodermatology tells us about its good and bad sides. Journal of Investigative Dermatology, 132, 976–984.

    CAS  Google Scholar 

  30. Lictevout, E., & Faysse, N. (2018). A doubly invisible aquifer: Hydrogeological studies and actors strategies in the pampa del Tamarugal aquifer, northern Chile. Water Alternatives (WaA), 11, 592–606.

    Google Scholar 

  31. Liu, J. G., Zang, C. F., Tian, S. Y., Yang, H., Jia, S. F., You, L. Z., et al. (2013). Water conservancy projects in China: Achievements, chalenges and way forward. Global Environmental Change, 23, 633–643.

    Google Scholar 

  32. Liu, T., Zhang, Y. H., Xu, Y. J., Lin, H. L., & Xu, X. J. (2014). The effects of dust haze on mortality are modified by seasons and individual characteristics in Guangzhou, China. Environmental Pollution, 187, 116–123.

    Google Scholar 

  33. Lundy, L., & Wade, R. (2011). Integrating sciences to sustain urban ecosystem services. Progress in Physical Geography, 35, 653–669.

    Google Scholar 

  34. Mac-Mary, S., Sainthillier, J. M., Jeudy, A., Sladen, C., Williams, C., & Bell, M. (2010). Assessment of cumulative exposure to UVA through the study of asymmetrical facial skin aging. Clinical Interventions in Aging, 5, 277–284.

    Google Scholar 

  35. Massuel, S., & Riaux, J. (2017). Groundwater overexploitation: Why is the red flag waved? Case study on the Kairouan plain aquifer (central Tunisia). Hydrogeol, 25, 1607–1620.

    Google Scholar 

  36. McCabe, S., Joldersma, T., & Li, C. (2010). Understanding the benefits of social tourism: Linking participation to subjective well-being and quality of life. International Journal of Tourism Research, 12, 761–773.

    Google Scholar 

  37. McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Retrieved from https://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 6 Feb 2019.

  38. Ministry of Roads and Urban Development. (2018). Report of master plan of Yazd. Yazd: Ministry of Roads and Urban Development.

    Google Scholar 

  39. O’Loingsigh, T., McTainsh, G. H., Tews, E. K., Strong, C. L., Leys, J. F., Shinkfield, P., et al. (2014). The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records. Aeolian Research, 12, 29–40.

    Google Scholar 

  40. Parsonsa, D. J., Reyb, D., Tanguyc, M., & Holmanb, I. P. (2019). Regional variations in the link between drought indices and reported agricultural impacts of drought. Agricultural Systems, 173, 119–129.

    Google Scholar 

  41. Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., & Pinceti, S. (2011). Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9, 27–36.

    Google Scholar 

  42. Phillis, Y. A., Kouikoglou, V. S., & Verdugo, C. (2017). Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64, 254–265.

    Google Scholar 

  43. Pickett, S., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., et al. (2001). Urban ecological systems linking terrestrial ecological physica and socioeconomic components. Annual Review of Ecology and Systematics, 32, 127–157.

    Google Scholar 

  44. Pozdnyakov, D. V., Korosov, A. A., Petrova, N. A., & Grassle, H. (2013). Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status. Journal of Great Lakes Research, 39, 34–45.

    CAS  Google Scholar 

  45. Querola, X., Tobíasa, A., Péreza, N., Karanasiou, A., Amatoa, F., Stafoggiab, M., et al. (2019). Monitoring the impact of desert dust outbreaks for air quality for health studies. Environment International, 130, 104867.

    Google Scholar 

  46. Raed Fawzi, M. A., & Monjur, M. (2018). Urban sustainability assessment framework development: The ranking and weighting of Iraqi indicators using analytic hierarchy process (AHP). Sustainable Cities and Society, 44, 356–366.

    Google Scholar 

  47. Regional Water Company of Yazd. (2018). Regional water company of Yazd-census and information. Retrieved from http://www.yzrw.ir/SC.php?type=static&id=21. Accessed 8 May 2019.

  48. Roberts, S. M., Oke, T. R., Grimmond, C. S., & Voogt, J. A. (2006). Comparison of four methods to estimate urban heat storage. Journal of Applied Meteorology and Climatology, 45(12), 1766–1781.

    Google Scholar 

  49. Saati, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.

    Google Scholar 

  50. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  51. Shanahan, D. F., Fuller, R. A., Bush, R., Lin, B. B., & Gaston, K. J. (2015). The health benefits of urban nature: How much do we need. BioScience, 65(5), 476–485.

    Google Scholar 

  52. Sible, E., Cooper, A., Malkia, K., Bruder, K., Watkins, S. C., Fofanov, Y., et al. (2015). Survey of viral populations within Lake Michigan nearshore waters at four Chicago area beaches. Data in Brief, 5, 9–12.

    Google Scholar 

  53. Statistical center of Iran. (2016). Census of population and housing-Yazd. https://www.amar.org.ir/. Accessed 9 Feb 2018.

  54. Taha, H. (1995). Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2), 99–103.

    Google Scholar 

  55. Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G., & Gaston, K. J. (2007). Urban form, biodiversity potential and ecosystem servises. Landscape and Urban Planning, 83, 308–317.

    Google Scholar 

  56. UN-Habitat. (2015). The city prosperity initiative: Global city report. UN-Habitat. https://cpi.unhabitat.org/sites/default/files/resources/CPI_2015%20Global%20City%20Report._0.pdf. Accessed 8 Feb 2019.

  57. United Nations. (2019). (UN) Retrieved from https://www.un.org/en/events/desertification_decade/whynow.shtml. Accessed 16 May 2019.

  58. U.S. Geological Survey. (2019). Earth explorer-home. Retrieved from https://earthexplorer.usgs.gov/.Accessed 2 Aug 2019.

  59. Vicente-Serrano, S. M., Beguería, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., et al. (2012). Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography, 34, 471–486.

    Google Scholar 

  60. Viguiera, B., Jourdec, H., Leonardic, V., Danielea, L., Batiot-Guilhec, C., Favreauc, G., et al. (2019). Water table variations in the hyperarid Atacama Desert: Role of the increasing groundwater extraction in the pampa del tamarugal (Northern Chile). Journal of Arid Environments, 168, 9–16.

    Google Scholar 

  61. Wai, K.-M., Yu, P. K., & Chan, P.-M. (2017). Urban UV environment in a sub-tropical megacity—A measurement and modelling study. Results in Physics, 7, 2705–2710.

    Google Scholar 

  62. Wen, Z. (2016). Eco-environmental impact of inter-basin water transfer projects: A review. Environmental Science and Pollution Research, 23, 12867–12879.

    Google Scholar 

  63. White, M. P., Alcock, I., Grelier, J., Wheeler, B. W., Hartig, T., Warber, S. L., et al. (2019). Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 9, 7730.

    Google Scholar 

  64. Wilhite, D. A., Sivakumar, M. V., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13.

    Google Scholar 

  65. World Health Organization (WHO). (2019). Ultraviolet radiation (UV). Retrieved from: https://www.who.int/uv/intersunprogramme/activities/uv_index/en/. Accessed 8 Oct 2019.

  66. Wu, J. G. (2013). Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landscape Ecology, 28, 999–1023.

    Google Scholar 

  67. Wu, J. (2014). Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning, 125, 209–221.

    Google Scholar 

  68. Wu, J. G., Jenerette, G. D., Buyantuyev, A., & Redman, C. (2011). Quantifying spatio temporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecological Complexity, 8, 1–8.

    Google Scholar 

  69. Wu, J. G., & Wu, T. (2013). Ecological resilience as a foundation for urban design and sustainability. In S. T. Pickett, M. L. Cadenasso, & B. P. McGrath (Eds.), Resilience in urban ecology and design: Linking theory and practice for sustainable cities. New York: Springer.

    Google Scholar 

  70. Xiao, Q., McPherson, E. G., Simpson, J. R., & Ustin, S. L. (2007). Hydrologic processes at the urban residential scale. Hydrological Processes, 21(16), 2174–2188.

    Google Scholar 

  71. Yan, L., Duarte, F., Wang, D., Zheng, S., & Ratti, C. (2019). Exploring the effect of air pollution on social activity in China using geotagged social media check-in data. Cities, 91, 116–125.

    Google Scholar 

  72. Young, R. F. (2010). Managing municipal green space for ecosystem services. Urban Forestry and Urban Greening, 9, 313–321.

    Google Scholar 

  73. Zhang, H., Cheng, J., Wu, Z., Li, C., Qin, J., & Liu, T. (2018). Effects of impervious surface on the spatial distribution of urban waterlogging risk spots at multiple scales in Guangzhou, South China. Sustainability, 10, 1589.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parastoo Parivar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parivar, P., Quanrud, D., Sotoudeh, A. et al. Evaluation of urban ecological sustainability in arid lands (case study: Yazd-Iran). Environ Dev Sustain 23, 2797–2826 (2021). https://doi.org/10.1007/s10668-020-00637-w

Download citation

Keywords

  • Arid lands
  • Urban biophysical structure
  • Urban ecosystem dynamic
  • Citizens’ security and satisfaction