A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations

Abstract

The sustainability of aquaculture industry strongly depends on numerous factors such as environment, ecology, economics, industry, human behaviour, policy and many others. The interdependence and balance of these factors is called as eco-aquaculture. However, eco-aquaculture field has not been widely studied, especially in Malaysia. Therefore, to enhance the sustainable development capacity of an eco-aquaculture system, the integrated simulation and analysis of the material-energy flow processes and the trends of process generating the ecological and economic positive–negative effects should be addressed. Thus, the objectives of this study are firstly to develop a system dynamics model of the eco-aquaculture system named ‘SD-AQEP’ to simulate quantitatively flow in the local iSHARP aquaculture industry; secondly, to analyse the integrated effects of the ecological economy, identify the defects and finally to make recommendations to improve the system performance. We build a system dynamics model of a Malaysian eco-aquaculture system (SD-AQEP) to quantify its integrated material and energy flows, identify systemic defects and recommend improvements in its performance. The systems is also able to scientifically diagnose the potential shortcomings and defects in the system, provide the basic improvement policies as well as check the effectiveness of the improvement policies. Hence, this system has the potential to reveal the internal structures in the complex system with ecosystem and other systems such as economy, environment and human activity.

This is a preview of subscription content, access via your institution.

Fig. 1

Source: CCICU (2015)

Fig. 2

Source: Blue Archipelago (2008)

Fig. 3
Fig. 4

Source: Google Maps (2015)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Abu Nasar, A., Bronwyn, M., Natasha, S., Kerstin, K. Z., & Stephen, T. G. (2017). The impact of the expansion of shrimp aquaculture on livelihoods in coastal Bangladesh. Environment, Development and Sustainability, 19(5), 2093–2144.

    Article  Google Scholar 

  2. Allsopp, M., Johnston, P., & Santillo, D. (2008). Challenging the aquaculture industry on sustainability (2nd ed.). Dordrecht: Greenpeace Int.

    Google Scholar 

  3. Arquitt, S., Honggang, X., & Jhonstone, A. R. (2005). A system dynamics analysis of booming and burst in the shrimp aquaculture industries. System Dynamic Review, 21(4), 305–342.

    Article  Google Scholar 

  4. Azman, N. K., Nurarina A. G., Nurul F. C. H., & Nakisah M. A. (2015). Isolation of dominant microalgae species from preparation pond for the culture of Litopenaeus vannamei (white shrimp) in Setiu, Terengganu. Setiu wetlands species, ecosystems and livelihood, Penerbit UMT, pp. 39–50.

  5. Badjeck, M. C., Allison, E. H., Halls, A. S., & Dulvy, N. K. (2010). Impacts of climate variability and change on fishery-based livelihoods. Marine Policy, 34(3), 375–383.

    Article  Google Scholar 

  6. Bailey-Brock, J. H., & Moss, S. M. (1992). Penaeid taxonomy, biology and zoogeography. In Marine shrimp culture: Principles and practices. Elsevier science publishers: Amsterdam, 27 pp.

  7. Barlas, Y. (1996). Formal aspect of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210.

    Article  Google Scholar 

  8. Bernama. (2014). PPNT labur lebih RM1 juta untuk tanaman kelapa sawit di Setiu. Berita Harian. Retrieved from https://www.bharian.com.my/node/13758.

  9. Binh, T. N. K., Nico, V., Nguyen, T. H., Luc, H., & Boon, E. K. (2005). Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environment, Development and Sustainability, 7(4), 519–536.

    Article  Google Scholar 

  10. Blue Archipelago. (2008). iSHARP http://www.bluearchipelago.com/lang/en-us/our-operation/iSHARP/.

  11. Boyd, C. E., & Clay, J. W. (1998). Shrimp aquaculture and the environment. Scientific American, 278, 58–65.

    Article  Google Scholar 

  12. Burford, M. A., & Lorenzen, K. (2004). Modeling nitrogen dynamics in intensive shrimp ponds: The role of sediment demineralization. Aquaculture, 229, 129–145.

    CAS  Article  Google Scholar 

  13. Carmichael, M. (2017). Why do people move? Here are the top reasons for relocation. Retrieved from: https://livability.com/topics/moving/why-do-people-move-here-are-the-top-reasons-for-relocation.

  14. CCICU. (2015). Setiu breakdown maps, Setiu, Terengganu, Malaysia. Retrieved from https://ukka.unisza.edu.my/international/index.php?option=com_content&view=article&id=72&Itemid=280.

  15. Chang, Y., Hong, F., & Lee, M. (2008). A system dynamic based DSS for sustainable coral reef management in Kenting Coastal Zone, Taiwan. Ecological Modelling, 211(1–2), 153–168.

    Article  Google Scholar 

  16. Chateau, P.-A., & Chang, Y.-C. (2010). A system dynamics model for marine cage aquaculture. In Proceeding on the 28th international conference of the system dynamics society, Seoul, South Korea, p. 38.

  17. Chopin, T., Robinson, S., Page, F., Ridler, N., Sawhney, M., Szemerda, M., et al. (2007). Integrated multi-trophic aquaculture making headway in Canada. The Canadian Aquaculture Research and Development Review, 28, 99–110.

    Google Scholar 

  18. Chou, C. L., Haya, K., Paon, L. A., & Moffatt, J. D. (2004). A regression model using sediment chemistry for the evaluation of marine environmental impacts associated with salmon aquaculture cage wastes. Marine Pollution Bulletin, 49(5–6), 465–472.

    CAS  Article  Google Scholar 

  19. Dahdouh-Guebas, F., Zetterström, T., Rönnbäck, P., Troell, M., Wickramasinghe, A., & Koedam, N. (2002). Recent changes in land-use in the Pambala-Chilaw Lagoon Complex (Sri Lanka) investigated using remote sensing and GIS: Conservation of mangroves vs development of shrimp farming. Environment, Development and Sustainability, 4(2), 185–200.

    Article  Google Scholar 

  20. Department, N. A. (2012). Auditor general report. Malaysia: National Audit Department.

    Google Scholar 

  21. Dey, M. M., Kumar, P., Chen, O. L., Khan, M. A., Barik, N. K., Li, L., et al. (2013). Potential impact of genetically improved carp strains in Asia. Food Policy, 43, 306–320.

    Article  Google Scholar 

  22. Diana, J. S. (2009). Aquaculture production and biodiversity conservation. BioScience, 59(1), 27–38.

    Article  Google Scholar 

  23. Dipsikha, D., Anupam, D., Tumpa, H., Bala, B. K., Amitava, G., & Debasish, C. (2017). Scenario of future e-waste generation and recycle-reuse-landfill-based disposal pattern in India: A system dynamics approach. Environment, Development and Sustainability, 19(4), 1473–1487.

    Article  Google Scholar 

  24. FAO, (2006). Cultured aquatic species information programme. Fisheries and Aquaculture Department, Rome. Updated 7 April 2006 [Cited 21 March 2014]. http://www.fao.org/fishery/culturedspecies/Penaeus_vannamei/en.

  25. Forrester, J. (1958). Industrial dynamics: A major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.

    Google Scholar 

  26. Galappaththi, E. K., & Berkes, F. (2015). Drama of the commons in small-scale shrimp aquaculture in Northwestern, Sri Lanka. International Journal of the Commons, 9(1), 347–368.

    Article  Google Scholar 

  27. Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350–353(June), 117–129.

    Article  Google Scholar 

  28. Gomez-Limon, J. A., Picazo-Tadeo, A. J., & Reig-Martinez, E. (2012). Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy, 29(2), 395–406.

    Article  Google Scholar 

  29. Gräslund, S., & Bengtsson, B.-E. (2001). Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—A review. The Science of the Total Environment, 280, 93–131.

    Article  Google Scholar 

  30. Hassanien, H. A., Ebtehag, A. K., Salem, M. A., & Dorgham, A. S. (2011). Multivariate analysis of morphometric parameters in wild and cultured Nile Tilapia Oreochromis niloticus. Journal of the Arabian Aquaculture Society, 6(2), 205–237.

    Google Scholar 

  31. Hirsch, G. B., Levine, R., & Miller, R. L. (2007). Using system dynamics modeling to understand the impact of social change initiatives. American Journal of Community Psychology, 39(3–4), 239–253.

    Article  Google Scholar 

  32. Huang, W. Y., Wang, J. K., & Fujimura, T. (1976). A model for estimating prawn populations in ponds. Aquaculture, 8, 57–70.

    Article  Google Scholar 

  33. Integrated Shrimp Aquaculture Park Proposed. (2009). Proposed infrastructure development for an Integrated Shrimp Aquaculture Park (iSHARP), Setiu, Terengganu Darul Iman. Accessed from http://www.sspsb.com.my/files/projects/projects-yle5dtff-1.pdf.

  34. Jiang, Z., Fang, J., et al. (2009). Eutrophication assessment and bioremediation strategy in a marine fish cage culture area in Nansha Bay, China. Journal of Applied Phycology, 22(4), 421–426.

    Article  Google Scholar 

  35. Jimenez-Montealegre, R., Verdegem, M. C. J., Van Dam, A., & Verreth, J. A. J. (2002). Conceptualization and validation of a dynamics model for the simulation of nitrogen transformations and fluxes in fish ponds. Ecological Modelling, 147, 123–152.

    CAS  Article  Google Scholar 

  36. Kannan, D., Thirunavukkarasu, P., Jagadeesan, K., Sheetu, N., & Kumar, A. (2015). Procedure for maturation and spawning of imported shrimp Litopenaeus vannamei in commercial hatchery, South East Coast of India. Fisheries and Aquaculture Journal, 6(4), 1–5.

    Google Scholar 

  37. Leung, P., & Shang, Y. C. (1989). Modeling prawn production management system: A dynamics Markov decision approach. Agricultural Systems, 29(1), 5–20.

    Article  Google Scholar 

  38. Li, F. J., Dong, S. C., & Li, F. (2012). A system dynamics model for analyzing the eco-agriculture system with policy recommendations. Ecological Modeling, 227, 34–45.

    Article  Google Scholar 

  39. Ljungqvist, M. G., Ersbøll, B. K. & Frosch, S. (2012). Multivariate image analysis for quality inspection in fish feed production. Technical University of Denmark (IMM-PHD-2012; No. 273).

  40. Lola, M. S., Isa, S. H., Ramlee, M. N. A., & Ikhwanuddin, M. (2017). Sustainability of Integrated Aquaculture Development Project using System Dynamic Approach. Journal of Sustainability Science and Management, 12(2), 194–203.

    Google Scholar 

  41. Lopes, P. F. M. (2008). Extracted and farmed shrimp fisheries in Brazil: Economic, environmental and social consequences of exploitation. Environment, Development and Sustainability, 10, 639.

    Article  Google Scholar 

  42. Marale, S. M. (2012). Shifting role of ecology in solving global environmental problems: Selected practical tools. Environment, Development and Sustainability, 14(6), 869–884.

    Article  Google Scholar 

  43. Marale, S. M. (2013). Strategies for coastal ecosystem management in India. Environment, Development and Sustainability, 15(1), 23–38.

    Article  Google Scholar 

  44. McCausland, W. D., Mente, E., Pierce, G. J., & Theodossiou, I. (2006). A simulation model of sustainability of coastal communities: Aquaculture, fishing, environment and labour markets. Ecological Modelling, 193(3–4), 271–294.

    Article  Google Scholar 

  45. Mizanuar, M., Giedraitis, R., Lieberman, V. R., Tahmina, A., & Taminskienė, V. (2013). Shrimp cultivation with water salinity in Bangladesh: The implications of an ecological model. Universal Journal of Public Health, 1(3), 131–142.

    Google Scholar 

  46. Montoya, R. A., Lawrence, A. L., Grant, W. E., & Velasco, M. (2000). Simulation of phosphorus dynamics in an intensive shrimp culture system: Effects of feed formulations and feeding strategies. Ecological Modelling, 129, 131–142.

    CAS  Article  Google Scholar 

  47. Morita, S. K. (1977). An econometric model of prawn pond production. Proceedings of the World Mariculture Society, 8, 741–746.

    Article  Google Scholar 

  48. Naila, N., & Salman, A. (2018). Forest land conversion dynamics: A case of Pakistan. Environment, Development and Sustainability, 20(1), 389–405.

    Article  Google Scholar 

  49. Newell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. Journal of Shellfish Research, 23(1), 51–61.

    Google Scholar 

  50. Patil, A. A., Annachhatre, A. P., & Tripathi, N. K. (2002). Comparison of conventional and geo-spatial EIA: A shrimp farming case study. Environmental Impact Assessment Review, 22(4), 361–375.

    Article  Google Scholar 

  51. Paul, B. G., & Vogl, C. R. (2011). Impacts of shrimp farming in Bangladesh: Challenges and alternatives. Ocean and Coastal Management, 54, 201–211.

    Article  Google Scholar 

  52. Pelletier, N., & Tyedmers, P. (2010). Life cycle assessment of frozen Tilapia Fillets from Indonesian Lake-based and pond-based intensive aquaculture systems. Journal of Industrial Ecology, 14, 467–481.

    CAS  Article  Google Scholar 

  53. Polovina, J., & Brown, H. (1978). A population dynamics model for prawn aquaculture. Proceedings of the World Mariculture Society, 8, 93–404.

    Google Scholar 

  54. Pushpam, K. (2012). Impact of economic drivers on mangroves of Indian Sundarbans: An exploration of missing links. Environment, Development and Sustainability, 14(6), 939–953.

    Article  Google Scholar 

  55. Qudrat-Ullah, H., & Seong, B. S. (2010). How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy, 38, 2216–2224.

    Article  Google Scholar 

  56. Ramesh, T. (2005). Modeling water quality management alternatives for a nutrient impaired stream using system dynamics simulation. Journal of Environmental Informatics, 5(2), 72–80.

    Article  Google Scholar 

  57. Randall, E. B. (1999). Integrated aquaculture in subsaharan Africa. Environment, Development and Sustainability, 1(3–4), 315–321.

    Google Scholar 

  58. Rekha, N. P. (2015). Assessment of impact of shrimp farming on coastal groundwater using geographical information system based analytical hierarchy process. Aquaculture, 448, 491–506.

    Article  Google Scholar 

  59. Rosita, H., Azmah, O., & Fatimah, K. (2015). Climate change effects on aquaculture production performance in Malaysia: An environmental performance analysis. International Journal of Business and Society, 16(3), 364–385.

    Google Scholar 

  60. Shi, T., & Gill, R. (2005). Developing effective policies for the sustainable development of ecological agriculture in China: The case study of Jinshan County with a systems dynamics mode. Ecological Economics, 53(2), 223–246.

    Article  Google Scholar 

  61. Shih, Y.-C., et al. (2009). Geographic information system applied to measuring benthic environmental impact with chemical measures on mariculture at Penghu Islet in Taiwan. Science of the Total Environment, 407, 1824–1833.

    CAS  Article  Google Scholar 

  62. Singkran, N., & Sudara, S. (2005). Effects of changing environments of mangrove creeks on fish communities at Trat Bay, Thailand. Environmental Management, 35(1), 45–55.

    Article  Google Scholar 

  63. Tao, Z. (2010). Scenarios of China’s oil consumption per capita (OCPC) using a hybrid Factor Decomposition-System Dynamics (SD) simulation. Energy, 35(1), 168–180.

    Article  Google Scholar 

  64. Wang, X.-J., Zhang, J.-Y., & Liu, J.-F. (2011). Water resources planning and management based on system dynamics: A case study of Yulin city. Environment, Development and Sustainability, 19(4), 1473–1487.

    Google Scholar 

  65. Xu, Z., Lin, X., Lin, Q., Yang, Y., & Wang, Y. (2007). Nitrogen, phosphorus, and energy waste outputs of four marine cage-cultured fish fed with trash fish. Aquaculture, 263, 130–141.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Niche Research Grant Scheme for Setiu Wetlands Development P1(R) (Second Phase) Vote No.: 53131/30, Ministry of Higher Education Malaysia. I thank the Terengganu Economic Development Unit, the Yayasan Diraja Sultan Mizan, the Setiu District Welfare and Safety Committee and Setiu residents for their insights during interviews and questionnaire sessions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhamad Safiih Lola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isa, S.H., Ramlee, M.N.A., Lola, M.S. et al. A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations. Environ Dev Sustain 23, 511–533 (2021). https://doi.org/10.1007/s10668-020-00594-4

Download citation

Keywords

  • System dynamics
  • Eco-aquaculture
  • Ecological modelling
  • Policy recommendations