Biological assessment of some wadable rivers in Turkey using fish data: a statistical approach

Abstract

In this study, we present a preliminary multimetric fish-based index (Index of Biotic Integrity; IBI) developed using a reliable statistical approach for some wadable rivers in four river basins in Turkey. Fish and abiotic data were collected according to standard methods. A total of 33 fish species were caught in the whole sampling area. Fish species were assigned to different guilds. Candidate metrics were selected from the literature and metric values were calculated. Sampling sites were preclassified into habitat status classes representing various levels of anthropogenic pressures. The responsivity of the candidate metrics was tested with linear mixed regression models. Correlation tests were performed to avoid redundancy among responsive metrics. Finally, six metrics (Shannon–Wiener diversity index, relative percentage of intolerant, invasive alien, invertivorous, and rheophilic individuals and number of benthic species) were selected. Selected metrics were scored using the continuous scoring approach. The IBI values were calculated by summing up the final metric scores. Then the IBI values were transformed into ecological quality ratio (EQR) values. We did not observe a “high” integrity class in the whole sampling area. The index was proven to be responsive to anthropogenic pressures and environmental variables tested using several approaches, including correlation analysis, graphical examination of the final metrics patterns and comparing the EQR classes with the habitat status assignment. The index, with minor adjustments, has a potential to be used as an assessment tool for different data sets in wadable rivers in Turkey. Furthermore, the statistical design used here can be applied to other river basins in Turkey or any other country with similar data limitations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aksever, F., Davraz, A., & Karagüzel, R. (2015). Groundwater balance estimation and sustainability in the Sandıklı Basin (Afyonkarahisar/Turkey). Journal of Earth System Science, 124, 783–798.

    Google Scholar 

  2. APHA. (2012). Standard methods for the examination of water and waste water (22nd ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  3. Aparicio, E., Carmona-Catot, G., Moyle, P. B., & García-Berthou, E. (2011). Development and evaluation of a fish-based index to assess biological integrity of Mediterranean streams. Aquatic Conservation: Marine and Freshwater Ecosystems, 21(4), 324–337.

    Google Scholar 

  4. Ayaz, S. Ç., Aktaş, Ö., Dağlı, S., Aydöner, C., Atasoy Aytış, E., & Akça, L. (2013). Pollution loads and surface water quality in the Kızılırmak Basin, Turkey. Desalination and Water Treatment, 51(7–9), 1533–1542.

    CAS  Google Scholar 

  5. Azevedo, L. B., van Zelm, R., Leuven Hendriks, J., & Huijbregts, M. A. J. (2015). Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environmental Pollution, 200, 85–92.

    CAS  Google Scholar 

  6. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.

    Google Scholar 

  7. Baba, A., & Tayfur, G. (2011). Groundwater contamination and its effect on health in Turkey. Environmental Monitoring and Assessment, 183, 77–94.

    CAS  Google Scholar 

  8. Benejam, L., Angermeier, P. L., Munne, A., & Garcia-Berthou, E. (2010). Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshwater Biology, 55(3), 628–642.

    Google Scholar 

  9. Bilgin, A., & Konanç, M. U. (2016). Evaluation of surface water quality and heavy metal pollution of Çoruh River Basin (Turkey) by multivariate statistical methods. Environmental Earth Sciences, 75, 1029–1047.

    Google Scholar 

  10. Blocksom, K. A. (2003). A performance comparison of metric scoring methods for a multimetric index for Mid-Atlantic Highland streams. Environmental Management, 31(5), 670–682.

    Google Scholar 

  11. Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, H., et al. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127–135.

    Google Scholar 

  12. Bozzetti, M., & Schulz, U. H. (2004). An index of biotic integrity based on fish assemblages for subtropical streams in southern Brazil. Hydrobiologia, 529, 133–144.

    Google Scholar 

  13. Breine, J., Quataert, P., Stevens, M., Ollevier, F., Volckaert, F. A. M., Van den Bergh, E., et al. (2010). A zone-specific fish-based biotic index as a management tool for the Zeeschelde estuary (Belgium). Marine Pollution Bulletin, 60, 1099–1112.

    CAS  Google Scholar 

  14. Breine, J., Simoens, I., Goethals, P., Quataert, P., Ercken, D., Van Liefferinghe, C., et al. (2004). A fish-based index of biotic integrity for upstream brooks in Flanders (Belgium). Hydrobiologia, 522, 133–148.

    Google Scholar 

  15. Breine, J., Van Thuyne, G., & De Bruyn, L. (2015). Development of a fish-based index combining data from different types of fishing gear. A case study of reservoirs in Flanders (Belgium). Belgian Journal of Zoology, 145(1), 17–39.

    Google Scholar 

  16. Burak, S. (2008). Evaluation of pollution abatement policies in the Marmara Sea with water quality monitoring. Asian Journal of Chemistry, 20, 4117–4128.

    CAS  Google Scholar 

  17. Burnham, K. P., & Anderson, D. R. (2004). Multimodal inference, understanding AIC and BIC in model selection. Sociological Methods and Research, 33, 261–304.

    Google Scholar 

  18. CEN (European Committee for Standardization) EN 14011. (2003a). Water quality. Sampling of fish with electricity. Brussels: EN 14011. CEN.

    Google Scholar 

  19. CEN, (European Committee for Standardization) EN 14757. (2003b). Water quality. Guidance on the scope and selection of fish sampling methods. Brussels: EN 14757. CEN.

    Google Scholar 

  20. Cheimonopoulou, M. T., Bobori, D. C., Theocharopoulos, I., & Lazaridou, M. (2011). Assessing ecological water quality with macroinvertebrates and fish: A case study from a small Mediterranean river. Environmental Management, 47, 279–290.

    Google Scholar 

  21. Çiçek, E., Birecikligil, S. S., & Fricke, R. (2015). Freshwater fishes of Turkey, a revised and updated annotated checklist. Biharean Biologist, 9(2), 141–157.

    Google Scholar 

  22. Daga, V. S., Gubiani, E. A., Cunico, A. M., & Baumgartner, G. (2012). Effects of abiotic variables on the distribution of fish assemblages in streams with different anthropogenic activities in southern Brazil. Neotropical Ichthyology, 10(3), 643–652.

    Google Scholar 

  23. Dauwalter, D. C., & Jackson, J. R. (2004). A provisional fish-index of biotic integrity for assessing Oauchita mountains streams in Arkansas U.S.A. Environmental Monitoring and Assessment, 91, 27–57.

    Google Scholar 

  24. Delpech, C., Courrat, A., Pasquaud, S., Lobry, J., Le Pape, O., Nicolas, D., et al. (2010). Development of a fish-based index to assess the ecological quality of transitional waters, the case of French estuaries. Marine Pollution Bulletin, 60, 908–918.

    CAS  Google Scholar 

  25. Dolph, C. L., Sheshukov, A. Y., Chizinski, C. J., Vondracek, B., & Wilson, B. (2010). The Index of Biological Integrity and the bootstrap, Can random sampling error affect stream impairment decisions? Ecological Indicators, 10, 527–537.

    Google Scholar 

  26. EFI+Consortium. (2009). Manual for the application of the new European fish index-EFI+. A fish-based method to assess the ecological status of European running waters in support of the Water Framework Directive.

  27. Einheuser, M. D., Nejadhashemi, A. P., Wang, L., Sowa, S. P., & Woznicki, S. A. (2013). Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health. Environmental Management, 51, 1147–1163.

    Google Scholar 

  28. Ekmekçi, F. G., Kırankaya, Ş. G., Gençoğlu, L., & Yoğurtçuoğlu, B. (2013). Türkiye içsu balıklarının güncel durumu ve istilanın etkilerinin değerlendirilmesi. İstanbul Üniversitesi Su Ürünleri Dergisi, 28, 105–140. (in Turkish).

    Google Scholar 

  29. Ergönül, M. B., Breine, J., & Van den Bergh, E. (2018). A technical guide to develop a statistically valid fish-based index in compliance with the Water Framework Directive: An evaluation for Turkish freshwaters. International Aquatic Research. https://doi.org/10.1007/s40071-018-0209-2.

    Article  Google Scholar 

  30. Erk’akan, F., & Akgül, M. (1986). Kızılırmak Havzası Ekonomik Balık Stoklarının Belirlenmesi. Doğa Türk Veterinerlik ve Hayvancılık Dergisi, 10(3), 239–250. (in Turkish).

    Google Scholar 

  31. EU Water Framework Directive. (2000). Directive of the European parliament and of the council 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal of the European Communities, 22(12), 327/1.

    Google Scholar 

  32. Falcone, J. A., Carlisle, D. M., & Weber, L. C. (2010). Quantifying human disturbance in watersheds, Variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecological Indicators, 10, 264–273.

    Google Scholar 

  33. Fame Consortium. (2004). Manual for the application of the European fish index-EFI, a fish based method to assess method to assess the ecological status of European rivers in support of the Water Framework Directive. Version 1.1, January 2005.

  34. Fausch, K. D., Lyons, J., Karr, J. R., & Angermeier, P. L. (1990). Fish communities as indicators of environmental degradation. American Fisheries Society Symposium, 8, 123–144.

    Google Scholar 

  35. Figuerola, B., Maceda-Veiga, A., & De Sostoa, A. (2012). Assessing the effects of sewage effluents in a Mediterranean creek: Fish population features and biotic indices. Hydrobiologia, 694, 75–86.

    Google Scholar 

  36. Flinders, C., Horwitz, R., & Belton, T. (2008). Relationship of fish and macroinvertebrate communities in the mid-Atlantic uplands, implications for integrated assessments. Ecological Indicators, 8, 588–598.

    Google Scholar 

  37. Freund, J. G., & Petty, J. T. (2007). Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. Environmental Management, 39, 707–720.

    Google Scholar 

  38. Geldiay, R., & Balık, S. (2002). Freshwater fishes of Turkey (IV ed., p. 532). Izmir: Ege University Press.

    Google Scholar 

  39. Gernes, M. C., & Helgen, J. C. (2002). Indices of biological integrity (IBI) for large depressional wetlands in Minnesota. St. Paul, MN: Minnesota Pollution Control Agency. Biological Monitoring Program, Environmental Outcomes Division, Minnesota.

    Google Scholar 

  40. Güçlü, S. S., & Küçük, F. (2015). The Ichthyofauna of Gediz River (Turkey), Taxonomic and zoogeographic features. Annual Research and Review in Biology, 6, 202–214.

    Google Scholar 

  41. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST, paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  42. Hued, A. C., & Bistoni, M. A. (2005). Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia, 543, 279–298.

    Google Scholar 

  43. Innal, D., & Erk’akan, F. (2006). Effects of exotic and translocated fish species in the inland waters of Turkey. Reviews in Fish Biology and Fisheries, 16, 39–50.

    Google Scholar 

  44. ISO 5667-6. (2014). Water quality—Sampling. Part 6: Guidance on sampling of rivers and streams. Geneva: International Organization for Standardization.

    Google Scholar 

  45. Jepsen, N., & Pont, D. (2007). Intercalibration of fish-based methods to evaluate river ecological quality, report from an EU intercalibration pilot exercise. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  46. Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21–27.

    Google Scholar 

  47. Kennard, M. J., Arthington, A. H., Pusey, B. J., & Harch, B. D. (2005). Are alien fish a reliable indicator of river health? Freshwater Biology, 50, 174–193.

    Google Scholar 

  48. Landsberg, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2), 113–390.

    Google Scholar 

  49. Launois, L., Veslot, J., Irz, P., & Argillier, C. (2011). Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs, towards the development of a fish-based index (FBI) for French lakes. Ecology of Freshwater Fish, 20(1), 120–132.

    Google Scholar 

  50. Leuven, R. S. E. W., & Oyen, F. G. F. (1987). Impact of acidification and eutrophication on the distribution of fish species in shallow and lentic soft waters of The Netherlands, an historical perspective. Journal of Fish Biology, 31(6), 753–774.

    Google Scholar 

  51. Magurran, A. E. (2004). Measuring biological diversity (p. 264). Hoboken: Blackwell Publishing.

    Google Scholar 

  52. Marshall, S., & Elliott, M. (1998). Environmental influences on the fish assemblage of the Humber estuary, U.K. Estuarine, Coastal and Shelf Science, 46(2), 175–184.

    Google Scholar 

  53. Morrison, G., Fatoki, O. S., Persson, L., & Ekberg, A. (2001). Assessment of the impact of point source pollution from the Keiskammahoek Sewage Treatment Plant on the Keiskamma River - pH, electrical conductivity, oxygen- demanding substance (COD) and nutrients. Water SA, 27(4).

  54. Mostafavi, H., Schinegger, R., Melcher, A., Moder, K., Mielach, C., & Schmutz, S. (2015). A new fish-based multi-metric assessment index for cyprinid streams in the Iranian Caspian Sea Basin. Limnologica, 51, 37–52.

    Google Scholar 

  55. Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalizes linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142.

    Google Scholar 

  56. NBMSR - National Basin Management Strategy Report. (2012). Ministry of Forestry and Water Management, April 19th 2012. pp. 50.

  57. Noble, R. A. A., Cowx, I. G., Goffaux, D., & Kestemont, P. (2007). Assessing the health of European rivers using functional ecological guilds of fish communities, standardizing species classification and approaches to metric selection. Fisheries Management and Ecology, 14, 381–392.

    Google Scholar 

  58. Oberdorff, T., Pont, D., Hugueny, B., & Porcher, J. P. (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology, 47, 1720–1734.

    Google Scholar 

  59. Pirhalla, D. E. (2004). Evaluating fish-habitat relationships for refining regional indexes of biotic integrity, development of a tolerance index of habitat degradation for Maryland stream fishes. Transactions of the American Fisheries Society, 133, 144–159.

    Google Scholar 

  60. Pont, D., Hugueny, B., & Rogers, C. (2007). Development of a fish-based index for the assessment of river health in Europe, the European Fish Index. Fisheries Management and Ecology, 14(6), 427–439.

    Google Scholar 

  61. Posthuma, L., & De Zwart, D. (2006). Predicted effects of toxic mixtures are confirmed by changes in fish species assemblages in Ohio, USA, Rivers. Environmental Toxicology and Chemistry, 25(4), 1094–1105.

    CAS  Google Scholar 

  62. Quataert, P., Verschelde, P., Breine, J., Verbeke, G., Goetghebeur, E., & Ollevier, F. (2011). A diagnostic modelling framework to construct indices of biotic integrity, A case study of fish in the Zeeschelde estuary (Belgium). Estuarine, Coastal and Shelf Science, 94, 222–233.

    Google Scholar 

  63. R Development Core Team. (2018). R: A language and environment for statistical computing. Vienna: Foundation for Statistical Computing.

    Google Scholar 

  64. RBPAP - River Basin Protection Action Plans Project. (2013). Republic of Turkey, Ministry of Forestry and Water Affairs. Gebze, Kocaeli: TUBITAK-MAM, Environment and Cleaner Production.

    Google Scholar 

  65. Schinegger, R., Trautwein, C., Melcher, A., & Schmutz, S. (2012). Multiple human pressures and their spatial patterns in European running waters. Water and Environment Journal, 26, 261–273.

    Google Scholar 

  66. Schinegger, R., Trautwein, C., & Schmutz, S. (2013). Pressure-specific and multiple pressure response of fish assemblages in European running waters. Limnologica, 43, 348–361.

    Google Scholar 

  67. Schmutz, S., Cowx, I. G., Haidvogl, G., & Pont, D. (2007). Fish-based methods for assessing European running waters, a synthesis. Fisheries Management and Ecology, 14, 369–380.

    Google Scholar 

  68. Schnier, S., Cai, X., & Cao, Y. (2016). Importance of natural and anthropogenic environmental factors to fish communities of the fox river in Illinois. Environmental Management, 57, 389–411.

    Google Scholar 

  69. Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D., Aronson, J., et al. (2013). Impacts of biological invasions, what’s what and the way forward. Trends in Ecology & Evolution, 28, 58–66.

    Google Scholar 

  70. Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics (3rd ed., p. 880). New York: Harper Collins Publishers.

    Google Scholar 

  71. Teixeira-de Mello, F., Meerhoff, M., González-Bergonzoni, I., Kristensen, E. A., Baattrup-Pedersen, A., & Jeppesen, E. (2016). Influence of riparian forests on fish assemblages in temperate lowland streams. Environmental Biology of Fishes, 99, 133–144.

    Google Scholar 

  72. Tejerina-Garro, F. L., Maldonado, M., Ibañez, C., Pont, D., Roset, N., & Oberdorff, T. (2005). Effects of natural and anthropogenic environmental changes on riverine fish assemblages, a framework for ecological assessment of rivers. Brazilian Archives of Biology and Technology, 48(1), 91–108.

    Google Scholar 

  73. TSI - Turkish Statistical Institute. (2017). Municipal wastewater data. Bulletin of the Turkish Statistical Institute (November 22), No, 24875.

  74. Van Wijk, F. J., Haye, M. A. A., Hehenkamp, M. J., Velde, I. A., de Bruin, E. F. L., & Schelleman, F. J. (2003). Su Çerçeve Direktifi’nin Türkiye’de Uygulanması, Uygulama El Kitabı (MAT01/TR/9/3) (in Turkish). pp. 32.

  75. Vogt, J., Colombo, R., Paracchini, M. L., de Jager, A., & Soille, P. (2003). CMM River and Catchment Database. EUR 20756 EN, EC-JRC, Inspra.

  76. Vogt, J., Soille, P., de Jaeger, A., Rimaviciute, E., Mehl, W., Foisneau, S., Bódis, K., Dusart, J., Paracchini, M. L., Haastrup, P., & Bamps, C. (2007). A Pan-European River and Catchment Database. EC-JRC (Report EUR 22920 EN), JRC Conference Reports; 40291. Luxembourg: Office for Official Publications of the European Communities.

  77. Wang, L., Robertson, D. M., & Garrison, P. J. (2007). Linkages between nutrients and assemblages of macroinvertebrates and fish in wadable streams, implication to nutrient criteria development. Environmental Management, 39, 194–212.

    Google Scholar 

  78. Wetzel, R. G. (1975). Limnology (p. 743). Toronto: W.B. Saunders Company.

    Google Scholar 

  79. Wolter, C. (2007). Temperature influence on the fish assemblage structure in a large lowland river, the lower Oder River, Germany. Freshwater Fish, 16(4), 493–503.

    Google Scholar 

  80. Wu, W., Xu, Z., Yin, X., & Zuo, D. (2014). Assessment of ecosystem health based on fish assemblages in the Wei River basin, China. Environmental Monitoring and Assessment, 186, 3701–3716.

    Google Scholar 

  81. Yerli, S. V., Kormaz, M., & Mangıt, F. (2016). Biological assessment by a fish-based index of biotic integrity for Turkish inland waters. In W. W. Taylor, D. M. Bartley, C. I. Goddard, N. J. Leonard & R. Welcomme (Eds.), Freshwater, fish and the future, Proceedings of the Global cross-sectoral conference. Food and Agriculture Organization of the United Nations, Rome; Michigan State University, East Lansing; and American Fisheries Society, Bethesda, Maryland (pp. 91–97).

  82. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (p. 578). New York: Springer.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to S. Cevher Özeren (Ph.D.) and Ronald Fricke (Ph.D.) for their assistance on the confirmation of some fish specimens. A part of this study was conducted in INBO (Research Institute of Nature and Forest) in Belgium. Mehmet Borga Ergönül was supported by TUBITAK during his stay in INBO. M.B. Ergonul is grateful to Michelle Thomas and Eren Karakoc for their kind helps during his stay in Brussels.

Funding

A part of this study was supported by the Republic of Turkey, Abolished Ministry of Forestry and Water Affairs, the General Directorate of Water Management (Determination of Basin Monitoring Points Project).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehmet Borga Ergönül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

River basin Sampling surveys Water quality score Human impact scores Hydromorph_score Total pressure scores Deterioration_scores
GRB 1 9 3 0 12 3
GRB 2 7 2 0 9 2
GRB 3 11 3 0 14 2
GRB 4 9 1 1 11 1
GRB 5 22 4 0 26 4
GRB 6 13 5 1 19 4
SRB 7 6 4 1 11 2
SRB 8 8 3 0 11 2
SRB 9 13 4 2 19 4
SRB 10 11 2 1 14 3
SRB 11 6 5 0 11 3
SRB 12 8 3 0 11 3
SRB 13 10 4 0 14 4
SRB 14 18 5 2 25 5
SRB 15 11 3 1 15 3
SRB 16 5 2 1 8 3
SRB 17 11 3 1 15 3
SRB 18 9 2 0 11 3
SRB 19 12 2 0 14 3
SRB 20 13 2 0 15 3
SRB 21 6 5 0 11 3
KCRB 22 13 4 1 18 3
KCRB 23 13 4 1 18 3
KCRB 24 14 4 1 19 3
KCRB 25 10 3 1 14 3
KCRB 26 12 3 0 15 3
KCRB 27 11 3 0 14 3
KCRB 28 12 3 1 16 4
KCRB 29 16 3 1 20 4
KCRB 30 12 3 1 16 4
KCRB 31 16 3 0 19 4
KCRB 32 21 3 0 24 4
KCRB 33 17 3 0 20 5
MRB 34 18 5 1 24 5
MRB 35 15 5 1 21 5
MRB 36 23 5 1 29 5
MRB 37 19 3 0 22 3
MRB 38 12 3 0 15 4
MRB 39 11 3 0 14 4
MRB 40 11 5 2 18 4
MRB 41 9 5 2 16 4
MRB 42 18 5 2 25 5
MRB 43 19 5 0 24 4
MRB 44 13 5 0 18 5
MRB 45 25 5 0 30 5

Appendix 2

Responsive Metrics Dom ShanH MnsTot MniInd MpiTol PiBiomTol MnsInt MniInt MpiInt MpiExoinv MnsNat MniNat
Dom 1            
ShanH − 0.956** 1           
MnsTot − 0.796** 0.929** 1          
MniInd − 0.651** 0.734** 0.740** 1         
MpiTol 0.610** − 0.734** − 0.762** − 0.471** 1        
PiBiomTol 0.484** − 0.597** − 0.669** − 0.373* 0.817** 1       
MnsInt − 0.519** 0.665** 0.762** 0.436** − 0.923** − 0.820** 1      
MniInt − 0.472** 0.618** 0.715** 0.494** − 0.876** − 0.744** 0.953** 1     
MpiInt − 0.504** 0.622** 0.677** 0.367* − 0.939** − 0.836** 0.972** 0.916** 1    
MpiExoinv 0.0218 − 0.1150 − 0.1666 − 0.2139 0.2566 0.1938 − 0.2030 − 0.2121 − 0.2179 1   
MnsNat − 0.732** 0.868** 0.931** 0.698** − 0.801** − 0.646** 0.778** 0.751** 0.719** − 0.456** 1  
MniNat − 0.596** 0.699** 0.722** 0.949** − 0.537** − 0.404** 0.488** 0.547** 0.430** − 0.470** 0.777** 1
MnsInver − 0.625** 0.767** 0.816** 0.673** − 0.834** − 0.669** 0.803** 0.788** 0.772** − 0.505** 0.911** 0.782**
MniInver − 0.612** 0.740** 0.768** 0.815** − 0.666** − 0.435** 0.606** 0.630** 0.556** − 0.380* 0.802** 0.870**
MpiInver − 0.1797 0.322* 0.367* 0.295* − 0.483** − 0.2639 0.424** 0.405** 0.421** − 0.543** 0.506** 0.434**
BiomInver − 0.426** 0.550** 0.646** 0.452** − 0.552** − 0.747** 0.597** 0.531** 0.526** − 0.1638 0.576** 0.456**
MnsBen − 0.567** 0.668** 0.713** 0.560** − 0.686** − 0.606** 0.626** 0.628** 0.591** − 0.518** 0.841** 0.680**
MniBen − 0.575** 0.642** 0.605** 0.689** − 0.612** − 0.421** 0.487** 0.554** 0.458** − 0.374* 0.711** 0.744**
PiBiomBen − 0.2633 0.2736 0.2719 0.0579 − 0.366* − 0.670** 0.337* 0.2296 0.355* − 0.2690 0.303* 0.1167
MpiRhe − 0.1105 0.2090 0.2623 0.1479 − 0.512** − 0.432** 0.530** 0.496** 0.561** − 0.392** 0.402** 0.2752
PiBiomRhe − 0.0683 0.1559 0.2288 0.1200 − 0.368* − 0.561** 0.391** 0.338* 0.412** − 0.340* 0.310* 0.2149
PiBiomLit − 0.349* 0.406** 0.429** 0.1699 − 0.503** − 0.841** 0.491** 0.348* 0.516** − 0.1235 0.380** 0.1822
MniLit − 0.569** 0.705** 0.757** 0.543** − 0.875** − 0.720** 0.909** 0.903** 0.875** − 0.2601 0.797** 0.607**
Responsive Metrics MnsInver MniInver MpiInver BiomInver MnsBen MniBen PiBiomBen MpiRhe PiBiomRhe PiBiomLit MniLit
Dom            
ShanH            
MnsTot            
MniInd            
MpiTol            
PiBiomTol            
MnsInt            
MniInt            
MpiInt            
MpiExoinv            
MnsNat            
MniNat            
MnsInver 1           
MniInver 0.857** 1          
MpiInver 0.650** 0.684** 1         
BiomInver 0.583** 0.485** 0.2611 1        
MnsBen 0.840** 0.649** 0.398** 0.534** 1       
MniBen 0.705** 0.691** 0.409** 0.403** 0.814** 1      
PiBiomBen 0.320* 0.1058 0.1613 0.647** 0.458** 0.2928 1     
MpiRhe 0.511** 0.362* 0.325* 0.2686 0.360* 0.2317 0.0832 1    
PiBiomRhe 0.405** 0.2279 0.1865 0.480** 0.347* 0.1566 0.365* 0.856** 1   
PiBiomLit 0.408** 0.1636 0.0933 0.794** 0.405** 0.1953 0.822** 0.2719 0.559** 1  
MniLit 0.828** 0.711** 0.499** 0.566** 0.628** 0.602** 0.2923 0.497** 0.331* 0.435** 1
  1. * and **indicate significance at a level of p < 0.05 and p < 0.001, respectively

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ergönül, M.B., Breine, J., Van den Bergh, E. et al. Biological assessment of some wadable rivers in Turkey using fish data: a statistical approach. Environ Dev Sustain 22, 7385–7425 (2020). https://doi.org/10.1007/s10668-019-00526-x

Download citation

Keywords

  • Biotic integrity
  • River management
  • Environmental degradation
  • Fish-based index
  • Ecological status