Interaction of toluidine blue dye with heptamolybdate: UV–visible and ultrafiltration study

Abstract

The present work represents the first attempt to apply a polyoxometalates (POMs) type heptamolybdate [Mo7O24]6− as a complexing agent for the removal of toluidine blue (TB) dye by ultrafiltration. Before ultrafiltration study, the interaction between heptamolybdate and dye was investigated using spectrophotometry UV–visible. It was shown that a metachromatic complex dye/POMs type 1:6 was formed with a blue shift from 623 to 550 nm indicating the formation of dye H-aggregates. The ultrafiltration process shows that the addition of heptamolybdate to dye solution greatly improved TB retention from 10 to 97%. The heptamolybdate concentration (0–1 mM), NaCl concentration (0.001–1500 mM), CTAB concentration (0.001–10 mM), pH (2–12) and applied pressure ∆P (2–4 bar) on the dye retention and permeate flux have been investigated. A 25 full factorial design shows that the main influenced factors are CTAB surfactant following by heptamolybdate and salt concentrations.

Graphic abstract

Schematic of the process of TB removal by PAUF method

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ben Fradj, A., Ben Hamouda, S., Ouni, H., et al. (2014a). Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultra filtration. Separation and Purification Technology,133, 76–81.

    Article  Google Scholar 

  2. Ben Fradj, A., Lafi, R., Ben Hamouda, S., et al. (2014b). Effect of chemical parameters on the interaction between cationic dyes and poly(acrylic acid). Journal of Photochemistry and Photobiology A: Chemistry,284, 49–54.

    CAS  Article  Google Scholar 

  3. Ben Fradj, A., Lafi, R., Gzara, L., et al. (2014c). Spectrophotometric study of the interaction of toluidine blue with poly (ammonium acrylate). Journal of Molecular Liquids,194, 110–114.

    CAS  Article  Google Scholar 

  4. Chen, S., Di, Y., Li, Y., et al. (2019). Removal of RhB from aqueous solutions by two polyoxometalates adsorbents. Journal of Inorganic and Organometallic Polymers and Materials.,29(3), 1049–1055.

    Article  Google Scholar 

  5. D’Ilario, L., & Martinelli, A. (2006). Toluidine blue: Aggregation properties and structural aspects. Modelling and Simulation in Materials Science and Engineering,14, 581–595.

    Article  Google Scholar 

  6. Dasgupta, J., Singh, M., Sikder, J., et al. (2015). Ecotoxicology and environmental safety response surface-optimized removal of reactive red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultra filtration. Ecotoxicology and Environmental Safety,121, 271–278.

    CAS  Article  Google Scholar 

  7. Fersi, C., Gzara, L., & Dhahbi, M. (2005). Treatment of textile effluents by membrane technologies. Desalination,185, 399–409.

    CAS  Article  Google Scholar 

  8. Hammami, M., Dorra Ennigrou, J., Naifer, K. H., & Ferid, M. (2016). Recovery of Samarium (III) from aqueous solutions by poly(sodium 4-styrenesulfonate) assisted-ultrafiltratio. Environmental Progress and Sustainable Energy,00, 1–7.

    Google Scholar 

  9. Hammami, M., Ennigrou, D. J., Horchani-Naifer, K., & Ferid, M. (2018). Comparative study of neodymium recovery from aqueous solutions by polyelectrolytes assisted-ultrafiltration. Korean Journal of Chemical Engineering,35, 518–525.

    CAS  Article  Google Scholar 

  10. Huang, J. H., Zhou, C. F., Zeng, G. M., et al. (2010). Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. Journal of Membrane Science,365, 138–144.

    CAS  Article  Google Scholar 

  11. Hueber, D., Hoffmann, M., Louis, B., Pale, P., & Blanc, A. (2014). Inorganic—organic heteropolyacid—Gold (I) hybrids : Structures and catalytic applications. Chemistry–A European Journal,20(14), 3903–3907.

    CAS  Article  Google Scholar 

  12. Israel, L., Beyene, M., Chekol, M., & Upadhyay, R. K. (2013). Spectrophotometric study of stability constants of Cr (III), Ni (II) and Cu (II) complexes with a schiff base in different solvents. Oriental Journal of Chemistry,29, 1111–1114.

    Article  Google Scholar 

  13. Juang, R., & Shiau, R. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration.,165, 159–167.

    CAS  Google Scholar 

  14. Kaczmarek, A. M., Van Hecke, K., & Van Deun, R. (2017). Low-percentage Ln 3 + doping in a tetranuclear lanthanum polyoxometalate assembled from [Mo 7 O 24]6− polyanions yielding visible and near-infrared luminescence. Inorganic Chemistry,56, 3190–3200.

    CAS  Article  Google Scholar 

  15. Kyzas, G. Z., & Matis, K. A. (2015). Nanoadsorbents for pollutants removal: A review. Journal of Molecular Liquids,203, 159–168.

    CAS  Article  Google Scholar 

  16. Lindqvist, I. N. G. V. A. R. (1950). Crystal structure studies on anhydrous sodium molybdates and tungstates. Acta Chemica Scandinavica,4, 1066–1074.

    CAS  Article  Google Scholar 

  17. Linke, D. (2009). Chapter 34 detergents. An overview (1st ed.). Amsterdam: Elsevier Inc.

    Google Scholar 

  18. Mahadevaiah, N., Venkataramani, B., & Prakash, B. S. J. (2007). Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite a breakthrough curve study. Chemistry of Materials,19(18), 4606–4612.

    CAS  Article  Google Scholar 

  19. Mahmoud, S. Ben, Hamzaoui, A. H., & Essafi, W. (2016). Spectrophotometric study of the interaction of methylene blue with poly (styrene-co-sodium styrene sulfonate). Mediterranean Journal of Chemistry,5, 493–506.

    Article  Google Scholar 

  20. Mansour, N. C., Ouni, H., & Hafiane, A. (2018). Binding of methylene blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration. Membrane Water Treatment,9(2), 87–94.

    Google Scholar 

  21. Mcrae, E. G., & Kasha, M. (1958). Enhancement of phosphorescence ability upon aggregation of dye molecules. The Journal of Chemical Physics,721, 7–9.

    Google Scholar 

  22. Mondal, S., Ouni, H., Dhahbi, M., & De, S. (2012). Kinetic modeling for dye removal using polyelectrolyte enhanced ultrafiltration. Journal of Hazardous Materials,229–230, 381–389.

    Article  Google Scholar 

  23. Mouelhi, M., Marzouk, I., & Hamrouni, B. (2016). Optimization studies for water defluoridation by adsorption: application of a design of experiments. Desalination and Water Treatment,57(21), 9889–9899.

    CAS  Article  Google Scholar 

  24. Nandini, R., & Vishalakshi, B. (2009). A comparitive study of polyelectrolyte-dye interactions. Spectrochimica Acta–Part A: Molecular and Biomolecular Spectroscopy,74, 1025–1030.

    CAS  Article  Google Scholar 

  25. Nandini, R., & Vishalakshi, B. (2010). A study of interaction of cationic dyes with anionic polyelectrolytes. Spectrochimica Acta–Part A: Molecular and Biomolecular Spectroscopy,75, 14–20.

    CAS  Article  Google Scholar 

  26. Ngang, H. P., Ooi, B. S., Ahmad, A. L., & Lai, S. O. (2012). Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chemical Engineering Journal,197, 359–367.

    CAS  Article  Google Scholar 

  27. Omwoma, S., Gore, C. T., Ji, Y., et al. (2014). Environmentally benign polyoxometalate materials. Coordination Chemistry Reviews,286, 17–29.

    Article  Google Scholar 

  28. Panić, V. V., Šešlija, S. I., Nešić, A. R., & Veličković, S. J. (2013). Adsorpcija azo boja na polimernim materijalima. Hemijska Industrija,67, 881–900.

    Article  Google Scholar 

  29. Proust, A., Thouvenot, R., & Gouzerh, P. (2008). Functionalization of polyoxometalates: Towards advanced applications in catalysis and materials science. Chemical Communications,16, 1837–1852.

    Article  Google Scholar 

  30. Purkait, M. K., DasGupta, S., & De, S. (2004). Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation and Purification Technology,37, 81–92.

    CAS  Article  Google Scholar 

  31. Saleh, A., Tuzen, M., & Sar, A. (2018). Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis. Journal of Environmental Management,211, 323–333.

    CAS  Article  Google Scholar 

  32. Schwarze, M., Schaefer, L., Chiappisi, L., & Gradzielski, M. (2018). Micellar enhanced ultrafiltration (MEUF) of methylene blue with carboxylate surfactants. Separation and Purification Technology,199, 20–26.

    CAS  Article  Google Scholar 

  33. Srinivasan, B. R., Morajkar, S. M., Khandolkar, S. S., et al. (2017). Synthesis, structure and properties of a hexarubidium heptamolybdate with bridging aqua ligands. Indian Journal of Chemistry–Section A Inorganic, Physical, Theoretical and Analytical Chemistry,56A, 601–609.

    CAS  Google Scholar 

  34. Velpula, S., Umapathy, K. S., Thyarla, A., et al. (2017). Dairy wastewater treatment by membrane systems–a review. International Journal of Pure and Applied Bioscience,5, 389–395.

    Article  Google Scholar 

  35. Verbych, S., Bryk, M., & Zaichenko, M. (2006). Water treatment by enhanced ultrafiltration. Desalination,198, 295–302.

    CAS  Article  Google Scholar 

  36. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management,93, 154–168.

    CAS  Article  Google Scholar 

  37. Vleugels, L. F. W., Ricois, S., Voets, I. K., & Tuinier, R. (2017). Reversal of metachromasy revisited; displacement of Toluidine-blue from alginate by surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects,529, 454–461.

    CAS  Article  Google Scholar 

  38. Yu, S., Liu, M., Ma, M., et al. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science,350, 83–91.

    CAS  Article  Google Scholar 

  39. Zhang, T., Brown, J., Oakley, R. J., & Faul, C. F. J. (2009). Towards functional nanostructures: Ionic self-assembly of polyoxometalates and surfactants. Current Opinion in Colloid and Interface Science,14, 62–70.

    CAS  Article  Google Scholar 

  40. Zhu, L., Chen, K., Hao, J., et al. (2015). Synthesis and crystallization behavior of surfactants with hexamolybdate as the polar headgroup. Inorganic Chemistry,54, 6075–6077.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Head of the Department of chemistry and laboratory of water, membrane and environmental biotechnology (LEMBE) CERTE of Tunisia and all who supported and assisted in conducting this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Malak Kahloul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahloul, M., Mahfoudhi, S., Chekir, J. et al. Interaction of toluidine blue dye with heptamolybdate: UV–visible and ultrafiltration study. Environ Dev Sustain 22, 4655–4672 (2020). https://doi.org/10.1007/s10668-019-00402-8

Download citation

Keywords

  • Ultrafiltration membrane
  • Complexation
  • Spectrophotometric study
  • Heptamolybdate
  • Toluidine blue