Detecting and understanding co-benefits generated in tackling climate change and environmental degradation in China

Abstract

China is facing the challenge of climate change and environmental protection in line with the promotion of sustainable development goals. Climate, environmental, and economic policy can each individually impact the effectiveness of other policies in the process of implementation. Understanding synergies among policy measures and identifying the co-benefits of environmental sustainable development generated by them is the focus of the paper. Because of existing restrictions in current research methods, the research community lacks the capacity to detect the interrelation among environmental, economic, and social development. Co-benefit research has gradually become an important area on sustainable development. Based on endogenous economic growth theory, we build a modified endogenous growth model to determine the optimal rates of economic growth, environmental pollution, energy input, and other factors in the context of co-benefits. Further empirical analysis is given which is missing in previous studies in this field. The empirical analysis reveals that China’s actual GDP, consumption, energy input, and physical capital growth rates are much higher than the optimal growth rate. However, the human capital and environmental pollution control growth rates are slower than the optimal values. Although China has a rapid growth in economy, the optimal level of comprehensive co-benefits has not been reached yet.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aghion, P., & Howitt, P. (1998). Endogenous growth theory. Cambridge: MIT Press.

    Google Scholar 

  2. Barro, D., & Canestrelli, E. (2005). Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach. European Journal of Operational Research, 163(1), 217–229.

    Google Scholar 

  3. Becker, G. S. (1964). Human capital: A theoretical and empirical analysis, with special reference to education. Chicago: University of Chicago Press.

    Google Scholar 

  4. Bils, M., & Klenow, P. J. (2000). Does schooling cause growth. American Economic Review,90(5), 1160–1183.

    Google Scholar 

  5. Bollen, J., Guay, B., Jamet, S., & Corfee-Morlot, J. (2009a). Co-benefits of climate change mitigation policies: Literature review and new results. OECD Economics Department Working Papers.

  6. Bollen, J., van der Zwaan, B., Brink, C., & Eerens, H. (2009b). Local air pollution and global climate change: A combined cost-benefit analysis. Resource and Energy Economics,31(3), 161–181.

    Google Scholar 

  7. Bovenberg, A. L., & Smulders, S. (1995). Environmental quality and pollution saving technological change in a two-sector endogenous growth model. Journal of Public Economics,57, 369–391.

    Google Scholar 

  8. BP. (2014). BP statistical review of world energy. http://www.bp.com/zh_cn/china/reports-and-publications/bp_2014. Accessed 12 Mar 2019.

  9. Broome, J. (1992). Counting the cost of global warming. Cambridge: White Horse Press.

    Google Scholar 

  10. Byrne, M. M. (1997). Is growth a dirty word? Pollution, abatement and endogenous growth’. Journal of Development Economics,54(2), 261–284.

    Google Scholar 

  11. Chow, G. C. (1993). Capital formation and economic growth in China. Quarterly Journal of Economics,108(3), 809–842.

    Google Scholar 

  12. Cifuentes, L., Borja-Aburto, V. H., Gouveia, N., et al. (2001). Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000–2020): Santiago, Sao Paulo, Mexico City, and New York City. Environmental Health Perspectives,109(suppl 3(2)), 419–425.

    CAS  Google Scholar 

  13. Dasgupta, P., & Heal, G. (1974). The optimal depletion of exhaustible resources. Review of Economic Studies,41, 3–28.

    Google Scholar 

  14. Dasgupta, P., & Heal, G. (1979). Economic theory and exhaustible resources. Cambridge: University of Cambridge Press.

    Google Scholar 

  15. David, F., & Hendry, S. (1995). Dynamic econometrics (p. 68). Oxford: Oxford University Press.

    Google Scholar 

  16. Den Butter, F. A. G., & Hofkes, M. W. (1995). Sustainable development with extractive and non-extractive use of the environment in production. Environmental & Resource Economics,6(4), 341–358.

    Google Scholar 

  17. Dong, K., & Sun, R. (2017). A review of China’s energy consumption structure and outlook based on a long-range energy alternatives modeling tool. Petroleum Science,1(14), 214–227.

    Google Scholar 

  18. Evans, D. J. (2006). Social discount rates for the European Union. Departmental Working Paper. 2006-20

  19. Gu, X. (2004). Two statistical methods for estimating the inter-temporal consumption elasticity of substitution of China. Tongji Yanjiu (Statistical Research),9, 8–11.

    Google Scholar 

  20. He, J. (1992). Estimation of assets in China. Shuliang Jingji Yu Jishu Jingji Yanjiu (Studies on Quantitative and Technological Economics),8, 24–27.

    Google Scholar 

  21. Knight, F. H. (1921). Risk, uncertainty and profit. Social Science Electronic Publishing,4, 682–690.

    Google Scholar 

  22. Kula, E. (1985). An empirical investigation on the social time preference rate for the UK. Environment and Planning,17, 199–217.

    Google Scholar 

  23. López, R. (1994). The environment as a factor of production: The effects of economic growth and trade liberalization. Journal of Environment Economics and Management,27(2), 163–184.

    Google Scholar 

  24. Mehra, R., & Prescott, E. C. (1985). The equity premium: A puzzle. Journal of Monetary Economics,15(2), 145–161.

    Google Scholar 

  25. Michael, P., & Rotillon, G. (1996). Disutility of pollution and endogenous growth. University of Aix Marseille and Modem. Paris: University of Paris, Greoam, pp. 144–156.

  26. National Bureau of Statistics of China. (2014). China statistical yearbook 2013. Beijing: China Statistics Press.

    Google Scholar 

  27. Panayotou, T. (2000). Globalization and environment. CID Working Paper No. 53. https://www.hks.harvard.edu/content/download/69302/1250018/version/1/file/053.pdf. Accessed 12 Mar 2019

  28. Pearce, D. W., & Ulph, D. (1999). A social discount rate for the United Kingdom. CSERGE Working Paper (Vol. 57, No. 1, pp. 59–80).

  29. Pigou, A. C. (1932). The economics of welfare. London: Macmillan.

    Google Scholar 

  30. Price, C. (1989). The theory and applications of forest economics. Oxford: Basil Blackwell.

    Google Scholar 

  31. Rafaj, P., Schopp, W., Russ, P., et al. (2013). Co-benefits of post-2012 global climate mitigation policies. Mitigation and Adaptation Strategies for Global Change,18(6), 801–824.

    Google Scholar 

  32. Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal,38, 543–559.

    Google Scholar 

  33. Rive, N. (2010). Climate policy in Western Europe and avoided costs of air pollution control. Economic Modelling,27(1), 103–115.

    Google Scholar 

  34. Robson, A. J. (1980). Costly innovation and natural resources. International Economics Review,21(1), 17–30.

    Google Scholar 

  35. Romer, D. (2001). Advanced macroeconomics (pp. 1–5). Shanghai: Shanghai University of Finance & Economics Press.

    Google Scholar 

  36. Romer, P. M. (1994). The origins of endogenous growth. Journal of Economic Perspectives,8(1), 3–22.

    Google Scholar 

  37. Rypdal, K., Rive, N., Astrom, S., et al. (2007). Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy,35(12), 6309–6322.

    Google Scholar 

  38. Scholz, C. M., & Ziemes, G. (1999). Exhaustible resources, monopolistic competition, and endogenous growth. Environmental & Resource Economics,13(2), 169–185.

    Google Scholar 

  39. Schou, P. A. (1996). Growth model with technological progress and non-renewable resources. Mimeo: University of Copenhagen.

    Google Scholar 

  40. Schultz, T. (1961). Investment in human capita. American Economic Review,51(1), 1–17.

    Google Scholar 

  41. Scott, M. F. G. (1989). A new view of economic growth. Oxford: Clarendon Press.

    Google Scholar 

  42. Shrestha, R. M., & Pradhan, S. (2010). Co-benefits of CO2 emission reduction in a developing country. Energy Policy,38(5), 2586–2597.

    CAS  Google Scholar 

  43. Smulders, S., & Gradus, R. (1996). Pollution abatement and long-term growth. European Journal of Political Economics,12(3), 505–532.

    Google Scholar 

  44. Solow, R. M. (2008). The economics of resources or the resources of economics. Journal of Natural Resources and Policy Research,1, 69–82.

    Google Scholar 

  45. Stiglitz, J. (1974). Growth with exhaustible natural resources: Efficient and optimal growth paths. Review of Economic Studies,41, 123–137.

    Google Scholar 

  46. Stokey, N. L. (1998). Are there limits to growth? International Economic Review,39(1), 1–31.

    Google Scholar 

  47. Tang, X. J. (2006). Capital deepening, human capital accumulation, and sustainable economic growth of China. Shijie Jingji (The Journal of World Economy),8, 57–64.

    Google Scholar 

  48. Treasury, H. M. (2003). Appraisal and evaluation in central government (The Green Book). London: HMSO Press.

    Google Scholar 

  49. U.S. Energy Information Administration. (2015). Annual energy outlook 2015. https://www.eia.gov/pressroom/presentations/sieminski_05042015.pdf. Accessed 12 Mar 2019.

  50. Uzawa, H. (1965). Optimum technical change in an aggregative model of economic growth. International Economics Review,6(1), 18–31.

    Google Scholar 

  51. Vuuren, D. P., Cofala, J., Eerens, H. E., et al. (2006). Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy,34(4), 444–460.

    Google Scholar 

  52. Wang, J. Y. (2001). Economic theory and empirical research of human capital (pp. 81–83). Beijing: Chinese Financial & Economic Publishing House.

    Google Scholar 

  53. Wang, Y., & Yao, Y. (2003). Sources of China’s economic growth 1952–1999: Incorporating human capital accumulation. China Economic Review,14(2), 32–52.

    CAS  Google Scholar 

  54. Weitzman, M. (2007). Subjective expectations and asset-return puzzles. American Economic Review,97(4), 1102–1130.

    Google Scholar 

  55. Worrell, E., & Price, L. (2001). Policy scenarios for energy efficiency improvement in industry. Energy Policy, 29(14), 1223–1241.

    Google Scholar 

  56. Zhang, J., & Zhang, Y. (2003). Recalculating the capital of China and a review of Li and Tang’s article. Jingji Yanjiu (Journal of Economic Research),7, 35–43.

    Google Scholar 

  57. Zhang, L. (1991). Systemic analysis of economic efficiency during the 5th five year plan. Jingji Yanjiu (Journal of Economic Research),4, 8–17.

    Google Scholar 

  58. Zheng, S., Yi, H., & Li, H. (2015). The impacts of provincial energy and environmental policies on air pollution control in China. Renewable and Sustainable Energy Review,49, 386–394.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 71774033) and Fudan Tyndall Centre (No. JIH6286001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation details of the model

Appendix: Derivation details of the model

Appendix 1: Optimal growth rates

The objective function of the dynamic model can be established as follows

$$\begin{aligned} & \hbox{max} \phi = \hbox{max} \mathop \smallint \limits_{0}^{\infty } e^{ - \rho t} U\left( {C,S,X} \right){\text{d}}t \\ & s.t.:\dot{K} = Y - C - \delta K - \psi \left( H \right) - V \\ & \dot{H} = \eta \left( {1 - \mu } \right)H - \delta H \\ & \dot{X} = \gamma Y - Q\left( V \right) - \varepsilon X \\ & \dot{S} = - R \\ \end{aligned}$$
(38)

The current-value Hamiltonian is

$$\begin{aligned} \tilde{H} = & \left( {\frac{{C^{1 - \sigma } - 1}}{1 - \sigma } + \frac{{S^{1 - \omega } - 1}}{1 - \omega } - \frac{{X^{1 + \varphi } - 1}}{1 + \varphi }} \right) + \lambda_{k} \left[ {Y - C - \delta K - \psi \left( H \right) - V} \right] \\ & + \lambda_{H} \left[ {\eta \left( {1 - \mu } \right)H - \delta H} \right] + \lambda_{X} \left[ {\gamma Y - Q\left( V \right) - \varepsilon X} \right] + \lambda_{S} \left( { - R} \right) \\ \end{aligned}$$
(39)

where C, R, μ, and V are control variables, and K, H, X, and S are state variables.

We differentiate \(\tilde{H}\) partially with respect to the four control variables C, R, μ, and V, and set the results equal to zero:

$$\frac{{\partial \tilde{H}}}{\partial C} = C^{ - \sigma } - \lambda_{k} = 0$$
(40)
$$\frac{{\partial \tilde{H}}}{\partial \mu } = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\beta \frac{Y}{\mu } - \lambda_{H} \eta H = 0$$
(41)
$$\frac{{\partial \tilde{H}}}{\partial R} = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\left( {1 - \alpha - \beta } \right)\frac{Y}{R} - \lambda_{S} = 0$$
(42)
$$\frac{{\partial \tilde{H}}}{\partial V} = - \lambda_{k} - \lambda_{X} Q^{\prime}\left( V \right) = 0$$
(43)

The Euler equations of the four state variables are

$$\frac{{\partial \tilde{H}}}{\partial K} = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\alpha \frac{Y}{K} - \lambda_{k} \delta = \rho \lambda_{k} - \dot{\lambda }_{k}$$
(44)
$$\frac{{\partial \tilde{H}}}{\partial H} = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\beta \frac{Y}{H} - \lambda_{k} \psi^{{\prime }} \left( H \right) + \lambda_{H} \eta \left( {1 - \mu } \right) - \lambda_{H} \delta = \rho \lambda_{H} - \dot{\lambda }_{H}$$
(45)
$$\frac{{\partial \tilde{H}}}{\partial X} = - X^{\varphi } - \lambda_{X} \varepsilon = \rho \lambda_{X} - \dot{\lambda }_{X}$$
(46)
$$\frac{{\partial \tilde{H}}}{\partial S} = S^{ - \omega } = \rho \lambda_{S} - \dot{\lambda }_{S}$$
(47)

Let g be the growth rate of each variable, that is,

$$g_{c} = \frac{{\dot{C}}}{C},g_{k} = \frac{{\dot{K}}}{K},g_{R} = \frac{{\dot{R}}}{R},g_{H} = \frac{{\dot{H}}}{H},g_{S} = \frac{{\dot{S}}}{S}, g_{{\lambda_{k} }} = \frac{{\dot{\lambda }_{k} }}{{\lambda_{k} }}$$
(48)

From (40),

$$- \sigma g_{c} = g_{{\lambda_{k} }}$$
(49)

Assume that the technology level of environmental protection remains the same, that is, \(Q^{{\prime }} \left( V \right)\) is a constant. From (43),

$$\frac{{\lambda_{k} }}{{\lambda_{X} }} = - Q^{{\prime }} \left( V \right)$$
(50)

Take derivative of (50) with respect to t on both sides, we have

$$g_{{\lambda_{X} }} = g_{{\lambda_{k} }}$$
(51)

From (44),

$$\frac{{\dot{\lambda }_{k} }}{{\lambda_{k} }} = - \left( {1 + \frac{{\lambda_{X} }}{{\lambda_{K} }}\gamma } \right)\alpha \frac{Y}{K} + \delta + \rho$$
(52)

At steady state, the growth rates of all the variables are constant. So \(\dot{\lambda }_{k}\)/\(\lambda_{K}\) is a constant. \(\delta\) and \(\rho\) are constants, so \(\left( {1 + \frac{{\lambda_{X} }}{{\lambda_{K} }}\gamma } \right)\alpha \frac{Y}{K}\) is a constant. Take derivative of \(\left( {1 + \frac{{\lambda_{X} }}{{\lambda_{K} }}\gamma } \right)\alpha \frac{Y}{K}\) with respect to t. We have

$$g_{Y} = g_{K}$$
(53)

From (41),

$$\left( {\lambda_{k} + \lambda_{X} \gamma } \right)\frac{Y}{{\lambda_{H} H}} = \frac{\eta \mu }{\beta }$$
(54)

\(\eta \mu\)/\(\beta\) is constant, so the left-hand side of (54) is constant. Take derivative of (54) with respect to t.

$$g_{{\lambda_{k} }} + g_{Y} = g_{{\lambda_{H} }} + g_{H}$$
(55)

From (42),

$$\left( {\lambda_{k} + \lambda_{X} \gamma } \right)\frac{Y}{{\lambda_{S} R}} = \frac{1}{1 - \alpha - \beta }$$
(56)

1/(\(1 - \alpha - \beta\)) is constant, so the left-hand side of (56) is constant. Take derivative of (56) with respect to t.

$$g_{{\lambda_{k} }} + g_{Y} = g_{{\lambda_{S} }} + g_{R}$$
(57)

From (46),

$$\frac{{\dot{\lambda }_{X} }}{{\lambda_{X} }} = \frac{{X^{\varphi } }}{{\lambda_{X} }} + \varepsilon + \rho$$
(58)

\(\dot{\lambda }_{X}\)/\(\lambda_{X}\), \(\varepsilon\), and \(\rho\) are constants, so \(X^{\varphi }\)/\(\lambda_{X}\) is constant. Take derivative of (58) with respect to t.

$$\varphi g_{X} = g_{{\lambda_{X} }}$$
(59)

From (47),

$$\frac{{\dot{\lambda }_{S} }}{{\lambda_{S} }} = \frac{{S^{ - \varphi } }}{{\lambda_{S} }} + \rho$$
(60)

Take derivative of (60) with respect to t.

$$- \omega g_{S} = g_{{\lambda_{S} }}$$
(61)

Divide Eq. (5) by S on both sides, we have

$$\frac{{\dot{S}}}{S} = - \frac{R}{S}$$
(62)

\(g_{S}\) is a constant, so take derivative of (62) with respect to t.

$$g_{S} = g_{R}$$
(63)

At steady state, from the relation of output, consumption, and physical capital, we have

$$g_{C} = g_{K}$$
(64)

Combine (41) and (45),

$$g_{{\lambda_{H} }} = \rho - \eta + \delta$$
(65)

Combine (49) to (57), (64), and (65), we have

$$g_{Y} = g_{C} = g_{k} = \frac{{\beta \left( {1 - \omega } \right)\left( {\rho - \eta + \delta } \right)}}{{\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}$$
(66)

From (61) and (63),

$$g_{S} = g_{R} = \frac{{\beta \left( {1 - \sigma } \right)\left( {\rho - \eta + \delta } \right)}}{{\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}$$
(67)

From (55), (65), and (66),

$$g_{H} = \frac{{\left( {\alpha + \beta - 1} \right)\left( {1 - \sigma } \right) + \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}{{\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}\left( {\rho - \eta + \delta } \right)$$
(68)

Finally, from (59),

$$g_{X} = - \frac{{\sigma \beta \left( {1 - \omega } \right)\left( {\rho - \eta + \delta } \right)}}{{\varphi \left[ {\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)} \right]}}$$
(69)

From the above, the optimal growth rate functions of physical capital, nonrenewable resources, environmental pollution, consumption, and human capital can be expressed as Eqs. (66)–(69).

Appendix 2: The modified Uzawa–Lucas two-sector model

Suppose the consumption utility function is

$$U\left( C \right) = \frac{{C^{1 - \sigma } - 1}}{1 - \sigma }$$
(70)

Then, the traditional Uzawa–Lucas two-sector model is

$$Y = C + \dot{K} + \delta K = AK^{\alpha } \left( {\mu H} \right)^{1 - \alpha }$$
(71)
$$\dot{H} = \eta \left( {1 - \mu } \right)H - \delta H$$
(72)

where Y is the production, C is the consumption, K is the physical capital stock, H is the human capital stock, μ is the proportion of human capital investing into the physical production department, and α is the output elasticity of the physical capital. The physical capital and human capital discount \(\delta\) are assumed at the same rate. Then, since our production function involves three variables, the modified Uzawa–Lucas two-sector model is introduced

$$Y = AK^{\alpha } \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta }$$
(73)
$$\dot{H} = \eta \left( {1 - \mu } \right)H - \delta H$$
(74)

From the amended model, η can be estimated. According to Barro and Canestrelli (2005), the Hamiltonian function of this amended model is

$$\begin{aligned} J = & \frac{{C^{1 - \sigma } - 1}}{1 - \sigma }{\text{e}}^{ - \rho t} + \lambda_{k} \left[ {AK^{\alpha } \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } - C - \delta K} \right] \\ & + \lambda_{H} \left[ {\eta \left( {1 - \mu } \right)H - \delta H} \right] + \lambda_{S} \left( { - R} \right) \\ \end{aligned}$$
(75)

The first-order conditions of the controlled variables C and \(\mu\) are

$$\frac{\partial J}{\partial C} = 0 \Rightarrow {\text{e}}^{ - \rho t} C^{ - \sigma } - \lambda_{k} = 0$$
(76)
$$\frac{\partial J}{\partial \mu } = 0 \Rightarrow \lambda_{k} A\beta K^{\alpha } \mu^{\beta - 1} H^{\beta - 1} R^{1 - \alpha - \beta } = \lambda_{H} \eta$$
(77)

By using the equation \(\dot{\lambda }_{k} = - \partial J/\partial K\), the following equation is obtained

$$\frac{{\dot{\lambda }_{k} }}{{\lambda_{k} }} = - A\alpha K^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } + \delta$$
(78)

By using the equation \(\dot{\lambda }_{H} = - \partial J/\partial H\), the following equation is obtained

$$\frac{{\dot{\lambda }_{H} }}{{\lambda_{H} }} = - \left( {\frac{{\lambda_{k} }}{{\lambda_{H} }}} \right)\beta K^{\alpha } \mu^{\beta } H^{\beta - 1} R^{1 - \alpha - \beta } - \eta \left( {1 - \mu } \right) + \delta$$
(79)

Differentiating Eq. (76) with respect to time and combining (79), the growth rate of consumption is given by

$$\gamma_{C} = \frac{{\dot{C}}}{C} = \left( {\frac{1}{\theta }} \right)\left[ {A\alpha K^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } - \delta - \rho } \right]$$
(80)

Then, subtracting Eq. (80) by \(\gamma_{k} = \frac{{\dot{K}}}{K} = AK^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } - \frac{C}{K} - \delta\), we have

$$\gamma_{C} - \gamma_{k} = \frac{{\dot{C}}}{C} - \frac{{\dot{K}}}{K} = \left( {\frac{\alpha - \theta }{\theta }} \right)AK^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } + \frac{C}{K} - \left( {1/\theta } \right)\left[ {\delta \left( {1 - \theta } \right) + \rho } \right]$$
(81)

By differentiating (76) with respect to time and combining the utility function (70) and (79), the growth rate of \(\mu\) is given by

$$\gamma_{\mu } = \frac{{\dot{\mu }}}{\mu } = \frac{\eta \beta }{\alpha } + \eta \mu - \frac{C}{K}$$
(82)

Since Eqs. (80)–(82) are time independent, their first-order derivatives with respect to time are equal to zero. Then we have the steady-state solution. According to the conclusions from Uzawa–Lucas model, the steady-state rate of human capital return, \(r^{*}\), is equal to the net marginal production of K in the product sector and the net marginal production of H in the human capital sector. Moreover, \(r^{*}\) is equal to the difference of the technological parameter η and the human capital depreciation rate, δx

$$r^{*} = \eta - \delta$$
(83)

Equation (83) measures the technological parameter for the education sector η.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Jiang, P. Detecting and understanding co-benefits generated in tackling climate change and environmental degradation in China. Environ Dev Sustain 22, 4589–4618 (2020). https://doi.org/10.1007/s10668-019-00399-0

Download citation

Keywords

  • Co-benefits
  • Climate change
  • Environmental protection
  • Endogenous economic growth
  • China