Skip to main content

Advertisement

Log in

Detecting and understanding co-benefits generated in tackling climate change and environmental degradation in China

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

China is facing the challenge of climate change and environmental protection in line with the promotion of sustainable development goals. Climate, environmental, and economic policy can each individually impact the effectiveness of other policies in the process of implementation. Understanding synergies among policy measures and identifying the co-benefits of environmental sustainable development generated by them is the focus of the paper. Because of existing restrictions in current research methods, the research community lacks the capacity to detect the interrelation among environmental, economic, and social development. Co-benefit research has gradually become an important area on sustainable development. Based on endogenous economic growth theory, we build a modified endogenous growth model to determine the optimal rates of economic growth, environmental pollution, energy input, and other factors in the context of co-benefits. Further empirical analysis is given which is missing in previous studies in this field. The empirical analysis reveals that China’s actual GDP, consumption, energy input, and physical capital growth rates are much higher than the optimal growth rate. However, the human capital and environmental pollution control growth rates are slower than the optimal values. Although China has a rapid growth in economy, the optimal level of comprehensive co-benefits has not been reached yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghion, P., & Howitt, P. (1998). Endogenous growth theory. Cambridge: MIT Press.

    Google Scholar 

  • Barro, D., & Canestrelli, E. (2005). Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach. European Journal of Operational Research, 163(1), 217–229.

    Google Scholar 

  • Becker, G. S. (1964). Human capital: A theoretical and empirical analysis, with special reference to education. Chicago: University of Chicago Press.

    Google Scholar 

  • Bils, M., & Klenow, P. J. (2000). Does schooling cause growth. American Economic Review,90(5), 1160–1183.

    Google Scholar 

  • Bollen, J., Guay, B., Jamet, S., & Corfee-Morlot, J. (2009a). Co-benefits of climate change mitigation policies: Literature review and new results. OECD Economics Department Working Papers.

  • Bollen, J., van der Zwaan, B., Brink, C., & Eerens, H. (2009b). Local air pollution and global climate change: A combined cost-benefit analysis. Resource and Energy Economics,31(3), 161–181.

    Google Scholar 

  • Bovenberg, A. L., & Smulders, S. (1995). Environmental quality and pollution saving technological change in a two-sector endogenous growth model. Journal of Public Economics,57, 369–391.

    Google Scholar 

  • BP. (2014). BP statistical review of world energy. http://www.bp.com/zh_cn/china/reports-and-publications/bp_2014. Accessed 12 Mar 2019.

  • Broome, J. (1992). Counting the cost of global warming. Cambridge: White Horse Press.

    Google Scholar 

  • Byrne, M. M. (1997). Is growth a dirty word? Pollution, abatement and endogenous growth’. Journal of Development Economics,54(2), 261–284.

    Google Scholar 

  • Chow, G. C. (1993). Capital formation and economic growth in China. Quarterly Journal of Economics,108(3), 809–842.

    Google Scholar 

  • Cifuentes, L., Borja-Aburto, V. H., Gouveia, N., et al. (2001). Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000–2020): Santiago, Sao Paulo, Mexico City, and New York City. Environmental Health Perspectives,109(suppl 3(2)), 419–425.

    CAS  Google Scholar 

  • Dasgupta, P., & Heal, G. (1974). The optimal depletion of exhaustible resources. Review of Economic Studies,41, 3–28.

    Google Scholar 

  • Dasgupta, P., & Heal, G. (1979). Economic theory and exhaustible resources. Cambridge: University of Cambridge Press.

    Google Scholar 

  • David, F., & Hendry, S. (1995). Dynamic econometrics (p. 68). Oxford: Oxford University Press.

    Google Scholar 

  • Den Butter, F. A. G., & Hofkes, M. W. (1995). Sustainable development with extractive and non-extractive use of the environment in production. Environmental & Resource Economics,6(4), 341–358.

    Google Scholar 

  • Dong, K., & Sun, R. (2017). A review of China’s energy consumption structure and outlook based on a long-range energy alternatives modeling tool. Petroleum Science,1(14), 214–227.

    Google Scholar 

  • Evans, D. J. (2006). Social discount rates for the European Union. Departmental Working Paper. 2006-20

  • Gu, X. (2004). Two statistical methods for estimating the inter-temporal consumption elasticity of substitution of China. Tongji Yanjiu (Statistical Research),9, 8–11.

    Google Scholar 

  • He, J. (1992). Estimation of assets in China. Shuliang Jingji Yu Jishu Jingji Yanjiu (Studies on Quantitative and Technological Economics),8, 24–27.

    Google Scholar 

  • Knight, F. H. (1921). Risk, uncertainty and profit. Social Science Electronic Publishing,4, 682–690.

    Google Scholar 

  • Kula, E. (1985). An empirical investigation on the social time preference rate for the UK. Environment and Planning,17, 199–217.

    Google Scholar 

  • López, R. (1994). The environment as a factor of production: The effects of economic growth and trade liberalization. Journal of Environment Economics and Management,27(2), 163–184.

    Google Scholar 

  • Mehra, R., & Prescott, E. C. (1985). The equity premium: A puzzle. Journal of Monetary Economics,15(2), 145–161.

    Google Scholar 

  • Michael, P., & Rotillon, G. (1996). Disutility of pollution and endogenous growth. University of Aix Marseille and Modem. Paris: University of Paris, Greoam, pp. 144–156.

  • National Bureau of Statistics of China. (2014). China statistical yearbook 2013. Beijing: China Statistics Press.

    Google Scholar 

  • Panayotou, T. (2000). Globalization and environment. CID Working Paper No. 53. https://www.hks.harvard.edu/content/download/69302/1250018/version/1/file/053.pdf. Accessed 12 Mar 2019

  • Pearce, D. W., & Ulph, D. (1999). A social discount rate for the United Kingdom. CSERGE Working Paper (Vol. 57, No. 1, pp. 59–80).

  • Pigou, A. C. (1932). The economics of welfare. London: Macmillan.

    Google Scholar 

  • Price, C. (1989). The theory and applications of forest economics. Oxford: Basil Blackwell.

    Google Scholar 

  • Rafaj, P., Schopp, W., Russ, P., et al. (2013). Co-benefits of post-2012 global climate mitigation policies. Mitigation and Adaptation Strategies for Global Change,18(6), 801–824.

    Google Scholar 

  • Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal,38, 543–559.

    Google Scholar 

  • Rive, N. (2010). Climate policy in Western Europe and avoided costs of air pollution control. Economic Modelling,27(1), 103–115.

    Google Scholar 

  • Robson, A. J. (1980). Costly innovation and natural resources. International Economics Review,21(1), 17–30.

    Google Scholar 

  • Romer, D. (2001). Advanced macroeconomics (pp. 1–5). Shanghai: Shanghai University of Finance & Economics Press.

    Google Scholar 

  • Romer, P. M. (1994). The origins of endogenous growth. Journal of Economic Perspectives,8(1), 3–22.

    Google Scholar 

  • Rypdal, K., Rive, N., Astrom, S., et al. (2007). Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy,35(12), 6309–6322.

    Google Scholar 

  • Scholz, C. M., & Ziemes, G. (1999). Exhaustible resources, monopolistic competition, and endogenous growth. Environmental & Resource Economics,13(2), 169–185.

    Google Scholar 

  • Schou, P. A. (1996). Growth model with technological progress and non-renewable resources. Mimeo: University of Copenhagen.

    Google Scholar 

  • Schultz, T. (1961). Investment in human capita. American Economic Review,51(1), 1–17.

    Google Scholar 

  • Scott, M. F. G. (1989). A new view of economic growth. Oxford: Clarendon Press.

    Google Scholar 

  • Shrestha, R. M., & Pradhan, S. (2010). Co-benefits of CO2 emission reduction in a developing country. Energy Policy,38(5), 2586–2597.

    CAS  Google Scholar 

  • Smulders, S., & Gradus, R. (1996). Pollution abatement and long-term growth. European Journal of Political Economics,12(3), 505–532.

    Google Scholar 

  • Solow, R. M. (2008). The economics of resources or the resources of economics. Journal of Natural Resources and Policy Research,1, 69–82.

    Google Scholar 

  • Stiglitz, J. (1974). Growth with exhaustible natural resources: Efficient and optimal growth paths. Review of Economic Studies,41, 123–137.

    Google Scholar 

  • Stokey, N. L. (1998). Are there limits to growth? International Economic Review,39(1), 1–31.

    Google Scholar 

  • Tang, X. J. (2006). Capital deepening, human capital accumulation, and sustainable economic growth of China. Shijie Jingji (The Journal of World Economy),8, 57–64.

    Google Scholar 

  • Treasury, H. M. (2003). Appraisal and evaluation in central government (The Green Book). London: HMSO Press.

    Google Scholar 

  • U.S. Energy Information Administration. (2015). Annual energy outlook 2015. https://www.eia.gov/pressroom/presentations/sieminski_05042015.pdf. Accessed 12 Mar 2019.

  • Uzawa, H. (1965). Optimum technical change in an aggregative model of economic growth. International Economics Review,6(1), 18–31.

    Google Scholar 

  • Vuuren, D. P., Cofala, J., Eerens, H. E., et al. (2006). Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy,34(4), 444–460.

    Google Scholar 

  • Wang, J. Y. (2001). Economic theory and empirical research of human capital (pp. 81–83). Beijing: Chinese Financial & Economic Publishing House.

    Google Scholar 

  • Wang, Y., & Yao, Y. (2003). Sources of China’s economic growth 1952–1999: Incorporating human capital accumulation. China Economic Review,14(2), 32–52.

    CAS  Google Scholar 

  • Weitzman, M. (2007). Subjective expectations and asset-return puzzles. American Economic Review,97(4), 1102–1130.

    Google Scholar 

  • Worrell, E., & Price, L. (2001). Policy scenarios for energy efficiency improvement in industry. Energy Policy, 29(14), 1223–1241.

    Google Scholar 

  • Zhang, J., & Zhang, Y. (2003). Recalculating the capital of China and a review of Li and Tang’s article. Jingji Yanjiu (Journal of Economic Research),7, 35–43.

    Google Scholar 

  • Zhang, L. (1991). Systemic analysis of economic efficiency during the 5th five year plan. Jingji Yanjiu (Journal of Economic Research),4, 8–17.

    Google Scholar 

  • Zheng, S., Yi, H., & Li, H. (2015). The impacts of provincial energy and environmental policies on air pollution control in China. Renewable and Sustainable Energy Review,49, 386–394.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 71774033) and Fudan Tyndall Centre (No. JIH6286001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation details of the model

Appendix: Derivation details of the model

1.1 Appendix 1: Optimal growth rates

The objective function of the dynamic model can be established as follows

$$\begin{aligned} & \hbox{max} \phi = \hbox{max} \mathop \smallint \limits_{0}^{\infty } e^{ - \rho t} U\left( {C,S,X} \right){\text{d}}t \\ & s.t.:\dot{K} = Y - C - \delta K - \psi \left( H \right) - V \\ & \dot{H} = \eta \left( {1 - \mu } \right)H - \delta H \\ & \dot{X} = \gamma Y - Q\left( V \right) - \varepsilon X \\ & \dot{S} = - R \\ \end{aligned}$$
(38)

The current-value Hamiltonian is

$$\begin{aligned} \tilde{H} = & \left( {\frac{{C^{1 - \sigma } - 1}}{1 - \sigma } + \frac{{S^{1 - \omega } - 1}}{1 - \omega } - \frac{{X^{1 + \varphi } - 1}}{1 + \varphi }} \right) + \lambda_{k} \left[ {Y - C - \delta K - \psi \left( H \right) - V} \right] \\ & + \lambda_{H} \left[ {\eta \left( {1 - \mu } \right)H - \delta H} \right] + \lambda_{X} \left[ {\gamma Y - Q\left( V \right) - \varepsilon X} \right] + \lambda_{S} \left( { - R} \right) \\ \end{aligned}$$
(39)

where C, R, μ, and V are control variables, and K, H, X, and S are state variables.

We differentiate \(\tilde{H}\) partially with respect to the four control variables C, R, μ, and V, and set the results equal to zero:

$$\frac{{\partial \tilde{H}}}{\partial C} = C^{ - \sigma } - \lambda_{k} = 0$$
(40)
$$\frac{{\partial \tilde{H}}}{\partial \mu } = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\beta \frac{Y}{\mu } - \lambda_{H} \eta H = 0$$
(41)
$$\frac{{\partial \tilde{H}}}{\partial R} = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\left( {1 - \alpha - \beta } \right)\frac{Y}{R} - \lambda_{S} = 0$$
(42)
$$\frac{{\partial \tilde{H}}}{\partial V} = - \lambda_{k} - \lambda_{X} Q^{\prime}\left( V \right) = 0$$
(43)

The Euler equations of the four state variables are

$$\frac{{\partial \tilde{H}}}{\partial K} = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\alpha \frac{Y}{K} - \lambda_{k} \delta = \rho \lambda_{k} - \dot{\lambda }_{k}$$
(44)
$$\frac{{\partial \tilde{H}}}{\partial H} = \left( {\lambda_{k} + \lambda_{X} \gamma } \right)\beta \frac{Y}{H} - \lambda_{k} \psi^{{\prime }} \left( H \right) + \lambda_{H} \eta \left( {1 - \mu } \right) - \lambda_{H} \delta = \rho \lambda_{H} - \dot{\lambda }_{H}$$
(45)
$$\frac{{\partial \tilde{H}}}{\partial X} = - X^{\varphi } - \lambda_{X} \varepsilon = \rho \lambda_{X} - \dot{\lambda }_{X}$$
(46)
$$\frac{{\partial \tilde{H}}}{\partial S} = S^{ - \omega } = \rho \lambda_{S} - \dot{\lambda }_{S}$$
(47)

Let g be the growth rate of each variable, that is,

$$g_{c} = \frac{{\dot{C}}}{C},g_{k} = \frac{{\dot{K}}}{K},g_{R} = \frac{{\dot{R}}}{R},g_{H} = \frac{{\dot{H}}}{H},g_{S} = \frac{{\dot{S}}}{S}, g_{{\lambda_{k} }} = \frac{{\dot{\lambda }_{k} }}{{\lambda_{k} }}$$
(48)

From (40),

$$- \sigma g_{c} = g_{{\lambda_{k} }}$$
(49)

Assume that the technology level of environmental protection remains the same, that is, \(Q^{{\prime }} \left( V \right)\) is a constant. From (43),

$$\frac{{\lambda_{k} }}{{\lambda_{X} }} = - Q^{{\prime }} \left( V \right)$$
(50)

Take derivative of (50) with respect to t on both sides, we have

$$g_{{\lambda_{X} }} = g_{{\lambda_{k} }}$$
(51)

From (44),

$$\frac{{\dot{\lambda }_{k} }}{{\lambda_{k} }} = - \left( {1 + \frac{{\lambda_{X} }}{{\lambda_{K} }}\gamma } \right)\alpha \frac{Y}{K} + \delta + \rho$$
(52)

At steady state, the growth rates of all the variables are constant. So \(\dot{\lambda }_{k}\)/\(\lambda_{K}\) is a constant. \(\delta\) and \(\rho\) are constants, so \(\left( {1 + \frac{{\lambda_{X} }}{{\lambda_{K} }}\gamma } \right)\alpha \frac{Y}{K}\) is a constant. Take derivative of \(\left( {1 + \frac{{\lambda_{X} }}{{\lambda_{K} }}\gamma } \right)\alpha \frac{Y}{K}\) with respect to t. We have

$$g_{Y} = g_{K}$$
(53)

From (41),

$$\left( {\lambda_{k} + \lambda_{X} \gamma } \right)\frac{Y}{{\lambda_{H} H}} = \frac{\eta \mu }{\beta }$$
(54)

\(\eta \mu\)/\(\beta\) is constant, so the left-hand side of (54) is constant. Take derivative of (54) with respect to t.

$$g_{{\lambda_{k} }} + g_{Y} = g_{{\lambda_{H} }} + g_{H}$$
(55)

From (42),

$$\left( {\lambda_{k} + \lambda_{X} \gamma } \right)\frac{Y}{{\lambda_{S} R}} = \frac{1}{1 - \alpha - \beta }$$
(56)

1/(\(1 - \alpha - \beta\)) is constant, so the left-hand side of (56) is constant. Take derivative of (56) with respect to t.

$$g_{{\lambda_{k} }} + g_{Y} = g_{{\lambda_{S} }} + g_{R}$$
(57)

From (46),

$$\frac{{\dot{\lambda }_{X} }}{{\lambda_{X} }} = \frac{{X^{\varphi } }}{{\lambda_{X} }} + \varepsilon + \rho$$
(58)

\(\dot{\lambda }_{X}\)/\(\lambda_{X}\), \(\varepsilon\), and \(\rho\) are constants, so \(X^{\varphi }\)/\(\lambda_{X}\) is constant. Take derivative of (58) with respect to t.

$$\varphi g_{X} = g_{{\lambda_{X} }}$$
(59)

From (47),

$$\frac{{\dot{\lambda }_{S} }}{{\lambda_{S} }} = \frac{{S^{ - \varphi } }}{{\lambda_{S} }} + \rho$$
(60)

Take derivative of (60) with respect to t.

$$- \omega g_{S} = g_{{\lambda_{S} }}$$
(61)

Divide Eq. (5) by S on both sides, we have

$$\frac{{\dot{S}}}{S} = - \frac{R}{S}$$
(62)

\(g_{S}\) is a constant, so take derivative of (62) with respect to t.

$$g_{S} = g_{R}$$
(63)

At steady state, from the relation of output, consumption, and physical capital, we have

$$g_{C} = g_{K}$$
(64)

Combine (41) and (45),

$$g_{{\lambda_{H} }} = \rho - \eta + \delta$$
(65)

Combine (49) to (57), (64), and (65), we have

$$g_{Y} = g_{C} = g_{k} = \frac{{\beta \left( {1 - \omega } \right)\left( {\rho - \eta + \delta } \right)}}{{\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}$$
(66)

From (61) and (63),

$$g_{S} = g_{R} = \frac{{\beta \left( {1 - \sigma } \right)\left( {\rho - \eta + \delta } \right)}}{{\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}$$
(67)

From (55), (65), and (66),

$$g_{H} = \frac{{\left( {\alpha + \beta - 1} \right)\left( {1 - \sigma } \right) + \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}{{\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)}}\left( {\rho - \eta + \delta } \right)$$
(68)

Finally, from (59),

$$g_{X} = - \frac{{\sigma \beta \left( {1 - \omega } \right)\left( {\rho - \eta + \delta } \right)}}{{\varphi \left[ {\left( {1 - \alpha - \omega \beta } \right)\left( {1 - \sigma } \right) - \left( {1 - \alpha } \right)\left( {1 - \omega } \right)} \right]}}$$
(69)

From the above, the optimal growth rate functions of physical capital, nonrenewable resources, environmental pollution, consumption, and human capital can be expressed as Eqs. (66)–(69).

1.2 Appendix 2: The modified Uzawa–Lucas two-sector model

Suppose the consumption utility function is

$$U\left( C \right) = \frac{{C^{1 - \sigma } - 1}}{1 - \sigma }$$
(70)

Then, the traditional Uzawa–Lucas two-sector model is

$$Y = C + \dot{K} + \delta K = AK^{\alpha } \left( {\mu H} \right)^{1 - \alpha }$$
(71)
$$\dot{H} = \eta \left( {1 - \mu } \right)H - \delta H$$
(72)

where Y is the production, C is the consumption, K is the physical capital stock, H is the human capital stock, μ is the proportion of human capital investing into the physical production department, and α is the output elasticity of the physical capital. The physical capital and human capital discount \(\delta\) are assumed at the same rate. Then, since our production function involves three variables, the modified Uzawa–Lucas two-sector model is introduced

$$Y = AK^{\alpha } \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta }$$
(73)
$$\dot{H} = \eta \left( {1 - \mu } \right)H - \delta H$$
(74)

From the amended model, η can be estimated. According to Barro and Canestrelli (2005), the Hamiltonian function of this amended model is

$$\begin{aligned} J = & \frac{{C^{1 - \sigma } - 1}}{1 - \sigma }{\text{e}}^{ - \rho t} + \lambda_{k} \left[ {AK^{\alpha } \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } - C - \delta K} \right] \\ & + \lambda_{H} \left[ {\eta \left( {1 - \mu } \right)H - \delta H} \right] + \lambda_{S} \left( { - R} \right) \\ \end{aligned}$$
(75)

The first-order conditions of the controlled variables C and \(\mu\) are

$$\frac{\partial J}{\partial C} = 0 \Rightarrow {\text{e}}^{ - \rho t} C^{ - \sigma } - \lambda_{k} = 0$$
(76)
$$\frac{\partial J}{\partial \mu } = 0 \Rightarrow \lambda_{k} A\beta K^{\alpha } \mu^{\beta - 1} H^{\beta - 1} R^{1 - \alpha - \beta } = \lambda_{H} \eta$$
(77)

By using the equation \(\dot{\lambda }_{k} = - \partial J/\partial K\), the following equation is obtained

$$\frac{{\dot{\lambda }_{k} }}{{\lambda_{k} }} = - A\alpha K^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } + \delta$$
(78)

By using the equation \(\dot{\lambda }_{H} = - \partial J/\partial H\), the following equation is obtained

$$\frac{{\dot{\lambda }_{H} }}{{\lambda_{H} }} = - \left( {\frac{{\lambda_{k} }}{{\lambda_{H} }}} \right)\beta K^{\alpha } \mu^{\beta } H^{\beta - 1} R^{1 - \alpha - \beta } - \eta \left( {1 - \mu } \right) + \delta$$
(79)

Differentiating Eq. (76) with respect to time and combining (79), the growth rate of consumption is given by

$$\gamma_{C} = \frac{{\dot{C}}}{C} = \left( {\frac{1}{\theta }} \right)\left[ {A\alpha K^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } - \delta - \rho } \right]$$
(80)

Then, subtracting Eq. (80) by \(\gamma_{k} = \frac{{\dot{K}}}{K} = AK^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } - \frac{C}{K} - \delta\), we have

$$\gamma_{C} - \gamma_{k} = \frac{{\dot{C}}}{C} - \frac{{\dot{K}}}{K} = \left( {\frac{\alpha - \theta }{\theta }} \right)AK^{\alpha - 1} \left( {\mu H} \right)^{\beta } R^{1 - \alpha - \beta } + \frac{C}{K} - \left( {1/\theta } \right)\left[ {\delta \left( {1 - \theta } \right) + \rho } \right]$$
(81)

By differentiating (76) with respect to time and combining the utility function (70) and (79), the growth rate of \(\mu\) is given by

$$\gamma_{\mu } = \frac{{\dot{\mu }}}{\mu } = \frac{\eta \beta }{\alpha } + \eta \mu - \frac{C}{K}$$
(82)

Since Eqs. (80)–(82) are time independent, their first-order derivatives with respect to time are equal to zero. Then we have the steady-state solution. According to the conclusions from Uzawa–Lucas model, the steady-state rate of human capital return, \(r^{*}\), is equal to the net marginal production of K in the product sector and the net marginal production of H in the human capital sector. Moreover, \(r^{*}\) is equal to the difference of the technological parameter η and the human capital depreciation rate, δx

$$r^{*} = \eta - \delta$$
(83)

Equation (83) measures the technological parameter for the education sector η.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Jiang, P. Detecting and understanding co-benefits generated in tackling climate change and environmental degradation in China. Environ Dev Sustain 22, 4589–4618 (2020). https://doi.org/10.1007/s10668-019-00399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00399-0

Keywords

Navigation