Skip to main content
Log in

Experimental and kinetic study of removal of lead (Pb+2) from battery effluent using sweet lemon (Citrus limetta) peel biochar adsorbent

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The main polluting agents of the environment are different anthropogenic activities; among them, industries are the primary one. Lead (Pb2+) is an extremely toxic metal ion and is the main raw material of lead–acid batteries. The present study focuses on adsorptive removal of lead from battery manufacturing industrial effluent by sweet lemon (Citrus limetta) peel biochar (SLPB). The removal efficiency was about 97.11% at optimum contact time of 160 min with optimum dosage of 3.5 g L−1 at constant temperature. The optimum pH and temperature were recorded to be 5 and 55 ºC with their maximum adsorption capacities of 55.67 and 53.89 mg g−1, respectively. The process obeyed second-order kinetics favoring chemisorption over physisorption. The adsorbent was also characterized by SEM–EDX, XRD, BET and FTIR to validate the results obtained. The results were justified by the functional groups present and changes in morphology of the biochar after treating wastewater. Further, adsorption process preferred Freundlich (r2 = 0.98) adsorption isotherm in comparison with Langmuir (r2 = 0.95) adsorption isotherm. The adsorption process demonstrated that the removal process was multilayered and heterogeneous with maximum adsorption capacity (qmax) of 2840.91 mg g−1 which was higher than most of the values obtained from other materials. Thus, the study concluded that SLPB might be used to overcome the pollution level of metals in our water bodies to maintain the quality of water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdelhafez, A. A., & Jianhua, L. (2016). Removal of Pb(II) from aqueous solution by using biochars derived from sugarcane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers,000, 1–9.

    CAS  Google Scholar 

  • Ahmadi, M., Kouhgardi, E., & Ramavandi, B. (2016). Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters. Korean Journal of Chemical Engineering,33(9), 2589–2601.

    CAS  Google Scholar 

  • Alluri, H. K., Ronda, S. R., Settalluri, V. S., Bondili, V. S., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology,6(11), 2924–2931.

    CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and waste water (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, B,97, 219–243.

    CAS  Google Scholar 

  • Baig, S. A., Sheng, T., Sun, C., Xue, X., Tan, L., & Xu, X. (2014). Arsenic removal from aqueous solutions using Fe3O4-HBC composite: Effect of calcination on adsorbents performance. PLoS ONE. https://doi.org/10.1371/journal.pone.0100704.

    Article  Google Scholar 

  • Bairagi, H., Khan, M. M. R., Ray, L., & Guha, A. K. (2011). Adsorption profile of lead on Aspergillus versicolor: a mechanistic probing. Journal of Hazardous Materials,186, 756–764.

    CAS  Google Scholar 

  • Bansal, M., Singh, D., & Garg, V. K. (2009). A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons. Journal of Hazardous Materials,15(171), 83–92.

    Google Scholar 

  • Basu, M., Guha, A. K., & Ray, L. (2017). Adsorption of lead on cucumber peel. Journal of Cleaner Production,151, 603–615.

    CAS  Google Scholar 

  • Bernard, E., & Jimoh, A. (2013). Adsorption of Pb, Fe, Cu, and Zn from industrial electroplating wastewater by orange peel activated carbon. International Journal of Engineering and Applied Sciences,4(2), 60–80.

    Google Scholar 

  • Bhatti, H. N., Zaman, Q., Kausar, A., Noreen, S., & Iqbal, M. (2016). Efficient remediation of Zr(IV) using citrus peel waste biomass:Kinetic, equilibrium and thermodynamic studies. Ecological Engineering,95, 216–228.

    Google Scholar 

  • BIS, (2012). Indian standards specifications for drinking water, IS:10500, Bureau of Indian Standards, New Delhi, http://cgwb.gov.in/Documents/WQ-standards.pdf.

  • Boehm, H. P., Diehl, E., Heck, W., & Sappok, R. (1964). Surface oxides of carbon. Angewandte Chemie International Edition,3, 669–677.

    Google Scholar 

  • Božić, D., Gorgievskia, M., Stanković, V., Štrbac, N., Ŝerbula, S., & Petrović, N. (2013). Adsorption of heavy metal ions by beech sawdust—Kinetics, mechanism and equilibrium of the process. Ecological Engineering,58, 202–206.

    Google Scholar 

  • Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., et al. (2017). Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2017.01.082.

    Article  Google Scholar 

  • Doke, K. M., & Khan, E. M. (2017). Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell. Arabian Journal of Chemistry,10(Supplement 1), S252–S260. https://doi.org/10.1016/j.arabjc.2012.07.031.

    Article  CAS  Google Scholar 

  • Feng, N., & Guo, X. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China,22, 1224–1231.

    CAS  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solutions. Zeitschrift für Physikalische Chemie,57, 385–470.

    CAS  Google Scholar 

  • Gaur, N., Kukreja, A., Yadav, M., & Tiwari, A. (2018). Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent: Equilibrium isotherm and thermal stability studies. Applied Water Science,8, 98.

    Google Scholar 

  • Georgieva, V. G., Tavlieva, M. P., Genieva, S. D., & Vlaev, L. T. (2015). Adsorption kinetics of Cr(VI) ions from aqueous solutions onto black rice husk ash. Journal of Molecular Liquids,208, 219–226.

    CAS  Google Scholar 

  • Gil, A., Amiri, M. J., Abedi-Koupai, J., & Eslamian, S. (2018). Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: Effects of aging time, Fe loading quantity and co-existing ions. Environmental Science and Pollution Research,25, 2814–2829.

    CAS  Google Scholar 

  • Gorgievski, M., Božić, D., Stanković, V., Ŝtrbac, N., & Ŝerbulab, Ŝ. (2013). Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw. Ecological Engineering,58, 113–122.

    Google Scholar 

  • Guan, X., Yan, S., Xu, Z., & Fan, H. (2016). Gallic acid-conjugated iron oxide nanocomposite: An efficient, separable, and reusable adsorbent for remediation of Al(III)-contaminated tannery wastewater. Journal of Environmental Chemical. https://doi.org/10.1016/j.jece.2016.12.010.

    Article  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Industrial and Engineering Chemistry Fundamentals,5, 212–223.

    CAS  Google Scholar 

  • Ho, Y. S., Mckay, G., Wase, D. J., & Foster, C. F. (2000). Study of the sorption of divalent metal ions on to peat. Advances in Science and Technology,18, 639–650.

    CAS  Google Scholar 

  • Hu, X., Xue, Y., Liu, L., Zeng, Y., & Long, L. (2018). Preparation and characterization of Na2S-modified biochar for nickel removal. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-1298-6.

    Article  Google Scholar 

  • Ibrahim, H. S., Ammar, N. S., & Ibrahim, M. (2012). Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,96, 413–420.

    CAS  Google Scholar 

  • Isaac, C. P. J., & Sivakumar, A. (2013). Removal of lead and cadmium ions from water using Annona squamosa shell: Kinetic and equilibrium studies. Desalination and Water Treatment,51, 40–42.

    Google Scholar 

  • Jin, Y., Yu, S., Teng, C., Song, T., Dong, L., Liang J., et al. (2017). Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution. 3 Biotech, 7, 123.

    Google Scholar 

  • Kapur, M., & Mondal, M. K. (2013). Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chemical Engineering Journal,218, 138–146.

    CAS  Google Scholar 

  • Kara, A., & Demirbel, E. (2012). Kinetic isotherm and thermodynamic analysis on adsorption of Cr(vi) ions from aqueous solutions by synthesis and characterization of magnetic-poly(divinylbenzene-vinylimidazole) microbeads. Water Air Soil Pollution,223, 2387–2403.

    CAS  Google Scholar 

  • Kılıç, M., Kırbıyık, Ç., Çepelioğullar, Ö., & Pütün, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, aby-product of pyrolysis. Applied Surface Science,283, 856–862.

    Google Scholar 

  • Kim, K., Keller, A. A., & Yang, J. (2013). Removal of heavy metals from aqueous solution using a novel composite of recycled materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects,425, 6–14.

    CAS  Google Scholar 

  • Kim, N., Park, M., & Park, D. (2015). A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresource Technology,175, 629–632.

    CAS  Google Scholar 

  • Kong, Z., Li, X., Tian, J., Yang, J., & Sun, S. (2014). Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions. Journal of Environmental Management,134, 109–116.

    CAS  Google Scholar 

  • Lagergren, S. (1898). Kungl. Svenska Vetenskapasakad. Handl,24, 1–39.

    Google Scholar 

  • Lambert, J. B., et al. (1987). Introduction to organic spectroscopy, Chapter 7: Infrared and Raman spectroscopy (pp. 174–177). New York: Macmillan Publication.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society,4(9), 1361–1403.

    Google Scholar 

  • Liang, S., Guo, X., Feng, N., & Tian, Q. (2009). Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. Journal of Hazardous Materials,170, 425–429.

    CAS  Google Scholar 

  • Mary, G. S., Sugumaran, P., Niveditha, S., Ramalakshmi, B., Ravichandran, P., & Seshadri, S. (2016). Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture,5, 43–53.

    Google Scholar 

  • Mckay, G., & Ho, Y. S. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry,34, 451.

    Google Scholar 

  • Mondal, M. K. (2009). Removal of Pb(II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column. Journal of Environmental Management,90, 3266–3271.

    CAS  Google Scholar 

  • Mopoung, R., & Kengkhetkit, N. (2016). Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. International Journal of Applied Chemistry,12, 23–35.

    Google Scholar 

  • Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2009). Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science,333, 14–26.

    CAS  Google Scholar 

  • Ning-chuan, F., & Xue-yi, G. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China,22, 1224–1231.

    Google Scholar 

  • Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O., & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon,48, 3313–3322.

    CAS  Google Scholar 

  • Oluyemi, E. A., Adeyemi, A. F., & Olabanji, I. O. (2012). Removal of Pb2+ and Cd2+ ions from wastewaters using palm kernel shell charcoal (pksc). Research Journal in Engineering and Applied Sciences,1(5), 308–313.

    Google Scholar 

  • Petrović, M., Šoštarić, T., Stojanović, M., Petrović, J., Mihajlović, M., Ćosović, A., et al. (2017). Mechanism of adsorption of Cu2+and Zn2+on the corn silk (Zea mays L.). Ecological Engineering,99, 83–90.

    Google Scholar 

  • Poonam, Bharti, S. K., & Kumar, N. (2018). Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Applied Water Science,8, 119.

    Google Scholar 

  • Poonam, & Kumar, M. (2018). Efficiency of sweet lemon (Citrus limetta) biochar adsorbent for removal of chromium from tannery effluent. Indian Journal of Environmental Protection,38(3), 246–256.

    Google Scholar 

  • Pourret, O., & Bollinger, J. C. (2018). “Heavy metal”—What to do now: To use or not to use? Science of the Total Environment,610–611, 419–420. https://doi.org/10.1016/j.scitotenv.2017.08.043.

    Article  CAS  Google Scholar 

  • Rafiq, S., Kaul, R., Sofi, S. A., Nazir, F., & Nayik, G. A. (2016). Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2016.07.006.

    Article  Google Scholar 

  • Rahangdale, R. V., Kore, S. V., & Kore, V. S. (2012). Waste management in lead-acid battery industry: A case study. World Journal of Applied Environmental Chemistry,1(1), 7–12.

    Google Scholar 

  • Ramos, S. N. D. C., Xavier, A. L. P., Teodoro, F. S., Elias, M. M. C., Gonçalves, F. J., Gil, L. F., et al. (2015). Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study. Industrial Crops and Products,74, 357–371.

    CAS  Google Scholar 

  • Rangabhashiyam, S., & Selvaraju, N. (2015). Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. Journal of Molecular Liquids,207, 39–49.

    CAS  Google Scholar 

  • Ravulapalli, S., & Kunta, R. (2018). Removal of lead (II) from wastewater using active carbon of Caryota urens seeds and its embedded calcium alginate beads as adsorbents. Journal of Environmental Chemical Engineering,6, 4298–4309.

    CAS  Google Scholar 

  • Reddy, N. A., Lakshmipathy, R., & Sarada, N. C. (2014). Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alexandria Engineering Journal,53, 969–975.

    Google Scholar 

  • Sadaka, S., Ashworth, A., Keyser, P., Allen, F., & Wright, A. (2014). Characterization of biochar from switchgrass carbonization. Energies,7, 548–567.

    CAS  Google Scholar 

  • Sizirici, B., Yildiz, I., AlYammahi, A., Obaidalla, F., AlMehairbi, M., AlKhajeh, S., et al. (2017). Adsorptive removal capacity of gravel for metal cations in the absence/presence of competitive adsorption. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0999-6.

    Article  Google Scholar 

  • Suguihiro, T. M., Mangrich, A. S., Junior, L. H. M., & Bergamini, M. F. (2013). An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination. Bioresource Technology,143, 40–45.

    CAS  Google Scholar 

  • Sun, L., Chen, D., Wan, S., & Yu, Z. (2015). Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresource Technology,198, 300–308.

    CAS  Google Scholar 

  • The Environment (Protection) Rules. (1986). http://cpcb.nic.in/GeneralStandards.pdf Accessed on 11 October 2017.

  • Tovar, C. T., Ortiz, A. V., Correa, D. A., Gómez, N. P., & Amor, M. O. (2018). Lead (II) remotion in solution using lemon peel (Citrus limonum) modified with citric acid. International Journal of Engineering and Technology,10(1), 117–122.

    CAS  Google Scholar 

  • Trakal, L., Veselská, V., Šafařík, I., Číhalová, S., & Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology,203, 318–324.

    CAS  Google Scholar 

  • Tsekova, K., Christova, D., Dencheva, V., & Ganeva, S. (2010a). Biosorption of binary mixture of copper and cobalt by free and immobilized biomass of Penicillium cyclopium. Comptes rendus de l`Academie bulgare des Sciences,63(1), 85–90.

    CAS  Google Scholar 

  • Tsekova, K., Todorova, D., & Ganeva, S. (2010b). Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. International Biodeterioration and Biodegradation,64, 447–451.

    CAS  Google Scholar 

  • Uçar, S., Erdem, M., Tay, T., & Karagö, S. (2015). Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Technologies and Environmental Policy,17, 747–756. https://doi.org/10.1007/s10098-014-0830-8.

    Article  CAS  Google Scholar 

  • Ullah, I., Nadeem, R., Iqbal, M., & Manzoor, Q. (2013). Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological Engineering,60, 99–107.

    Google Scholar 

  • Velazquez-Jimenez, L. H., Pavlick, A. P., & Rangel-Mendez, J. R. (2013). Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Industrial Crops and Products,43, 200–206.

    CAS  Google Scholar 

  • Venkatesha, N. J., Bhat, Y. S., & Prakash, B. S. J. (2016). Volume accessibility of acid sites in modified montmorillonite and triacetin selectivity in acetylation of glycerol. Appllied Catalysis A: General,496, 51–57.

    Google Scholar 

  • Vergili, I., Gönder, Z. B., Kaya, Y., Gülten, G., & Selva, C. (2017). Sorption of Pb(II) from battery industry wastewater using a weak acid cation exchange resin. Process Safety and Environment Protection. https://doi.org/10.1016/j.psep.2017.03.018.

    Article  Google Scholar 

  • Verma, A., Kumar, S., & Kumar, S. (2016). Biosorption of lead ions from the aqueous solution by Sargassum filipendula: Equilibrium and kinetic studies. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2016.10.026.

    Article  Google Scholar 

  • Wang, Y., Wang, X., Wang, X., Liu, M., Yang, L., Wu, Z., et al. (2012). Adsorption of Pb(II) in aqueous solutions by bamboo charcoal modified with KMnO4 via microwave irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects,414, 1–8.

    CAS  Google Scholar 

  • Yang, X., & Cui, X. (2013). Adsorption characteristics of Pb(II) on alkali treated tea residue. Water Resources and Industry,3, 1–10.

    CAS  Google Scholar 

  • Zhang, X., Tong, J., Hu, X. B., & Wei, W. (2018). Adsorption and desorption for dynamics transport of hexavalent chromium Cr(VI)) in soil column. Environmental Science Pollution Research,25, 459–468.

    CAS  Google Scholar 

  • Zhu, C., Hu, T., Tang, L., Zeng, G., Deng, Y., Lu, Y., et al. (2018). Highly efficient extraction of lead ions from smelting wastewater, slag and contaminated soil by two-dimensional montmorillonite-based surface ion imprinted polymer absorbent. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.06.105.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Mr. Shamshad Ahmad, Department of Environmental Science, Dr. Vertika Shukla, Department of Applied Geology, BBA University, Lucknow, India; and Dr. Vinayak V. Pathak, Department of Chemistry, Manav Rachna University, Faridabad, India, for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonam, Kumar, N. Experimental and kinetic study of removal of lead (Pb+2) from battery effluent using sweet lemon (Citrus limetta) peel biochar adsorbent. Environ Dev Sustain 22, 4379–4406 (2020). https://doi.org/10.1007/s10668-019-00389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00389-2

Keywords

Navigation