Skip to main content
Log in

Thermal performance of desiccant-based solar air-conditioning system with silica gel coating

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In the present paper, a solar-driven air-conditioning system comprising silica gel-coated concentric tube heat exchanger is fabricated and analyzed experimentally. The setup consists of two concentric tube heat exchangers with silica gel coating to achieve continuous dehumidification of the humid air. Parabolic trough-type solar collector is used as air heater to supply hot air continuously to regenerate the silica gel. The system performance is measured in terms of dehumidification factor and cooling capacity. The performance parameters are plotted against the different values of the atmospheric air temperature, cooling water temperature, and specific humidity. It is observed that the dehumidification factor and cooling capacity depend on both the cooling water temperature and the conditions of ambient air. The maximum value of dehumidification factor and cooling capacity achieved are 11.05 g/kg and 5.748 kJ/min, respectively, for the ambient air temperature of 37.6 °C and specific humidity of 23.99 g/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SCCTHE:

Silica gel-coated concentric tube heat exchanger

ΔD :

Dehumidification factor (g/kg)

W in :

Specific humidity of air at inlet of SCCTHE (g/kg)

W out :

Specific humidity of air at outlet of SCCTHE (g/kg)

Q :

Cooling capacity (kJ/min)

:

Air mass flow rate (kg/min)

h in :

Ambient air enthalpy at inlet of experimental setup (kJ/kg)

h out :

Supply air enthalpy at outlet of experimental setup (kJ/kg)

Δz :

Absolute error

Δz/z :

Relative error

SH:

Specific humidity (g/kg)

In/out:

Inlet/outlet

References

  • ASHRAE Handbook of Fundamentals (1997). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta (Ch. 14, pp. 9–12).

  • Bassuoni, M. M. (2011). An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant. Energy,36, 2628–2638.

    Article  CAS  Google Scholar 

  • Bourdoukan, P., Wurtz, E., Joubert, P., & Sperandio, M. (2008). Potential of solar heat pipe vacuum collectors in the desiccant cooling process: Modeling and experimental results. Solar Energy,82, 1209–1219.

    Article  CAS  Google Scholar 

  • Dai, Y. J., & Zhang, H. F. (2004). Numerical simulation and theoretical analysis of heat and mass transfer in a cross-flow liquid desiccant air dehumidifier packed with honeycomb paper. Energy Conversion and Management,45, 1343–1356.

    Article  CAS  Google Scholar 

  • Dhar, P. L., & Singh, S. K. (2001). Studies on solid desiccant based hybrid air-conditioning systems. Applied Thermal Engineering,21, 119–134.

    Article  CAS  Google Scholar 

  • Enteria, N., Yoshino, H., Mochida, A., Takaki, R., Satake, A., Yoshie, R., et al. (2009). Construction and initial operation of the combined solar thermal and electric desiccant cooling system. Solar Energy,83, 1300–1311.

    Article  Google Scholar 

  • Fathalah, K., & Aly, S. E. (1996). Study of a waste heat driven modified packed desiccant bed dehumidifier. Energy Conversion and Management,37(4), 457–471.

    Article  CAS  Google Scholar 

  • Henning, H. M. (2007). Solar assisted air conditioning of buildings: An overview. Applied Thermal Engineering,27, 1734–1749.

    Article  CAS  Google Scholar 

  • Jani, D. B., Mishra, M., & Sahoo. P. K. (2015). Experimental investigations on hybrid solid desiccant: Vapor compression air-conditioning system for Indian climate. In The proceedings of the 24th IIR international congress of refrigeration, Yokohama, Japan, Aug 16–22 (pp. 1–9).

  • Jani, D. B., Mishra, M., & Sahoo, P. K. (2016a). Performance analysis of hybrid solid desiccant: Vapor compression air-conditioning system in hot and humid weather of India. Building Services Engineering Research and Technology,37, 523–538.

    Article  Google Scholar 

  • Jani, D. B., Mishra, M., & Sahoo, P. K. (2016b). Solid desiccant air conditioning: A state of the art review. Renewable and Sustainable Energy Reviews,60, 1451–1469.

    Article  CAS  Google Scholar 

  • Jani, D. B., Mishra, M., & Sahoo, P. K. (2017). A critical review on solid desiccant based hybrid cooling systems. International Journal of Air-Conditioning and Refrigeration,25, 1–10.

    Article  Google Scholar 

  • Kline, S. J., & McClintock, F. A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering,78, 3–8.

    Google Scholar 

  • Mavroudaki, P., Beggs, C. B., & Sleigh, P. A. (2002). The potential for solar powered single stage desiccant cooling in southern Europe. Applied Thermal Engineering,22(3), 1129–1140.

    Article  CAS  Google Scholar 

  • Murali Krishna, S., & Srinivasa Murthy, S. (1989). Experiments on a silica gel rotary dehumidifier. Heat Recovery System and CHP,9, 467–473.

    Article  Google Scholar 

  • Nain, S., Anuradha, P., & Kajal, S. (2018). Experimental study and analysis of air heating system using a parabolic trough solar collector. Internaional Journal of Ambient Energy,39(2), 143–146.

    Article  CAS  Google Scholar 

  • Ramzy, K. A., Ashok Babu, T. P., & Kadoli, R. (2011). Semi-analytical method for heat and moisture transfer in packed bed of silica gel. International Journal of Heat and Mass Transfer,54, 983–993.

    Article  Google Scholar 

  • Slayzak, S. J., & Joseph P. R. (1998). Instrument uncertainty effect on calculation of absolute humidity using dew point, wet bulb and relative humidity sensors. In Renewable energy for the Americas conference, Albuquerque, New Mexico.

  • White, S. D., Kohlenbach, P., & Bongs, C. (2009). Indoor temperature variations resulting from solar desiccant cooling in a building without thermal back up. International Journal of Refrigeration,32, 695–704.

    Article  Google Scholar 

  • Worek, W. M., & Lavan, Z. (1982). Performance of a cross-cooled desiccant dehumidifier prototype. Journal Solar Energy Engineering,104(8), 187–196.

    Article  Google Scholar 

  • Yin, Y., Zhang, X., & Chen, Z. (2007). Experimental study on dehumidifier and regenerator of liquid desiccant cooling air-conditioning system. Building and Environment,42, 2505–2511.

    Article  Google Scholar 

  • Yin, Y. G., Zhang, X. S., & Peng, D. G. (2009). Model validation and case study on internally cooled/heated dehumidifier/regenerator of liquid desiccant systems. International Journal of Thermal Sciences,48, 1664–1671.

    Article  CAS  Google Scholar 

  • Yuan, W. X., Zheng, Y., Liu, X. R., & Yuan, X. G. (2008). Study of a new modified cross-cooled compact solid desiccant dehumidifier. Applied Thermal Engineering,28, 2257–2266.

    Article  CAS  Google Scholar 

  • Zhao, Y., Ge, T. S., Dai, Y. J., & Wang, R. Z. (2014). Experimental investigation on a desiccant dehumidification unit using fin-tube heat exchanger with silica gel coating. Applied Thermal Engineering,63, 52–58.

    Article  CAS  Google Scholar 

  • Zheng, W., & Worek, W. M. (1993). Numerical simulation of combined heat and mass transfer processes in a rotary dehumidifier. Numerical Heat Transfer Part A,23, 211–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Nain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The detailed uncertainty formulation of dehumidification factor and cooling capacity is given below.

1.1 Dehumidification factor (ΔD)

$${\text{Dehumidification}}\;{\text{factor}}\; (\Delta D )= W_{\text{in}} {-}W_{\text{out}} \;({\text{g/kg)}}$$
(5)

The dehumidification factor (ΔD) depends on the specific humidity of air at the inlet and outlet of SCCTHE. The specific humidity depends on the temperature and relative humidity of air which are measured by the RTD PT 100 thermocouple (± 0.2 °C) and hygrometer RHT-200 (± 2%RH) respectively. Applying the Kline and McClintock root-mean-square method (Kline and McClintock 1953) on Eq. (5), the uncertainty in the humidity ratio/specific humidity at inlet and outlet can be found out by the given expression.

$$\pm \, W = \left[ {\left( {\frac{\partial W}{\partial t} \times \in_{t} } \right)^{2} + \left( {\frac{\partial W}{\partial \phi } \times \in_{\phi } } \right)^{2} } \right]^{1/2}$$
(6)

where ± W is the uncertainty in specific humidity, \(\in_{t}\) is the error associated with RTD PT 100 temperature sensor, \(\in_{\phi }\) is the error associated with Hygrometer RHT 300.

To solve Eq. (7), following expressions are used (Slayzak and Joseph 1998)

$$\frac{\partial W}{\partial t} = 0.622\left( {\frac{{\partial p_{\text{v}} }}{\partial t}} \right)\left[ {\frac{p}{{(p - p_{\text{v}} )^{2} }}} \right]$$
(7)
$$\frac{{\partial p_{v} }}{\partial t} = p_{\text{v}} \left( {\frac{{ - C_{8} }}{{T^{2} }} + C_{10} + 2C_{11} T + 3C_{12} T^{2} + \frac{{C_{13} }}{T}} \right)$$
(8)

And

$$\frac{\partial W}{\partial \phi } = 0.622 \times p_{\text{vs}} \left[ {\frac{p}{{(p - p_{\text{v}} )^{2} }}} \right]$$
(9)

where p, total pressure (kPa); pv, partial pressure of water vapor (kPa); pvs, saturation pressure of water vapor (kPa); ϕ, relative humidity %, decimal RH; t, dry-bulb temperature (°C), T, absolute temperature (K).

The coefficients C8–C13 are found in ASHRAE Handbook of Fundamentals (1997).

Finally, the uncertainties found in the specific humidity at inlet/outlet are used to calculate the uncertainty in the dehumidification factor by using the following expression

$$\pm\, \Delta D = \left[ {\left( {\frac{\partial \Delta D}{{\partial W_{\text{in}} }} \times \delta W_{\text{in}} } \right)^{2} + \left( {\frac{\partial \Delta D}{{\partial W_{\text{out}} }} \times \delta W_{\text{out}} } \right)^{2} } \right]^{1/2}$$
(10)

where δWin and δWout are the errors associated with specific humidity of air at inlet and outlet. The solution for Eq. (10) using average experimental data is

$$\pm \,\Delta D = 0.13947^{{}}$$
$${\text{The}}\;{\text{percentage}}\;{\text{error}}\;{\text{in}}\;{\text{dehumidification}}\;{\text{factor}}\; = \;\frac{ \pm\, \Delta D}{\Delta D} \times 100 =\,\pm\, 3.9\%$$

1.2 Cooling capacity (Q)

$${\text{Cooling}}\;{\text{capacity}}\; (Q )= \dot{m}(h_{\text{in}} - \, h_{\text{out}} ) \;({\text{kJ/min)}}$$
(11)

The cooling capacity depends on the enthalpy and mass flow rate of air. The mass flow rate of air is taken as constant throughout the experimentation. The enthalpy depends on the temperature and relative humidity which are measured by the same instruments discussed above viz. RTD PT 100 thermocouple (± 0.2 °C) and hygrometer RHT-200 (± 2%RH) respectively. The uncertainty in the enthalpy at inlet and outlet can be found out by using the Kline and McClintock root-mean-square method.

$$\pm\, h = \left[ {\left( {\frac{\partial h}{\partial t} \times \in_{t} } \right)^{2} + \left( {\frac{\partial h}{\partial \phi } \times \in_{\phi } } \right)^{2} } \right]^{1/2}$$
(12)

To find out the uncertainty in enthalpy following equation (ASHRAE Handbook of Fundamentals 1997) is used.

$$h = 1.006t + W(2501 + 1.805t)$$
(13)

where

$$\frac{\partial h}{\partial t} = 1.006 + 1.805W$$
(14)

and

$$\frac{\partial h}{\partial \phi } = \frac{\partial h}{\partial W} \times \frac{\partial W}{\partial \phi }$$
$$\frac{\partial h}{\partial W} = 2501 + 1.805t$$
(15)
$$\frac{\partial W}{\partial \phi } = 0.622 \times p_{\text{vs}} \left[ {\frac{p}{{\left( {p - p_{\text{v}} } \right)^{2} }}} \right]$$
(16)

The uncertainty in the enthalpy at inlet and outlet are further used in the following equation to find out the uncertainty in cooling capacity.

$$\pm \,Q = \left[ {\left( {\frac{\partial Q}{{\partial \dot{m}}}\delta \dot{m}} \right)^{2} + \left( {\frac{\partial Q}{{\partial h_{\text{in}} }}\delta h_{\text{in}} } \right)^{2} + \left( {\frac{\partial Q}{{\partial h_{\text{out}} }}\delta h_{\text{out}} } \right)^{2} } \right]^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$
(17)

where δṁ, δhin, and δhout are the errors associated with mass flow rate and enthalpy of air at inlet and outlet, respectively. Using the average experimental data, the cooling capacity uncertainty is estimated to be

$$\pm \,Q = 0.155238^{{}}$$
$${\text{The}}\;{\text{percentage}}\;{\text{error}}\;{\text{in}}\;{\text{cooling}}\;{\text{capacity}} = \frac{ \pm \,Q}{Q} \times 100 = 4.19\%$$

*The average values of the enthalpy, humidity ratio, cooling capacity, and dehumidification factor are taken from Table 3, for uncertainty calculation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nain, S., Kajal, S. & Parinam, A. Thermal performance of desiccant-based solar air-conditioning system with silica gel coating. Environ Dev Sustain 22, 281–296 (2020). https://doi.org/10.1007/s10668-018-0201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0201-4

Keywords

Navigation