Skip to main content

Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?

Abstract

The transition towards a low-carbon transport sector (TS) plays a fundamental role on the decarbonisation of economies. The effects of both conventional (fossil fuels) and alternative (renewable fuels and electricity) energy consumption in the transport sector, economic growth, and carbon dioxide emissions were analysed by using a panel vector autoregressive of 21 high-income Organization for Economic Co-operation and Development countries from 1990 to 2014. The results support the feedback hypothesis between both conventional and alternative TS energy sources and economic growth. In other words, electricity use on TS has enlarged the economic growth, while consumption of renewable fuels is actually hampering it. Additionally, TS fossil fuels consumption is contributing to economic growth. With reference to the environmental impacts of TS energy use, this paper highlights the harmful effect of conventional energy sources on the environment. However, there is no evidence wherein TS alternative energy sources are directly linked with a reduction of carbon dioxide emissions. Accordingly, the promotion of alternative TS energy sources should deserve further attention. On the one hand, there is evidence that the use of renewable fuels is obstructing economic growth. On the other hand, the use of both TS electricity and renewable fuels is not reducing carbon dioxide emissions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    This variable comprises the direct use of renewable fuels by the transport sector and does not take into account the renewable electricity.

References

  1. Abdul-Wahhab, H. A., Al-Kayiem, H. H., Aziz, A. R. A., & Nasif, M. S. (2017). Survey of invest fuel magnetization in developing internal combustion engine characteristics. Renewable and Sustainable Energy Reviews, 79, 1392–1399. https://doi.org/10.1016/j.rser.2017.05.121.

    Article  Google Scholar 

  2. Abid, M., & Sebri, M. (2012). Energy consumption-economic growth nexus: Does the level of aggregation matter? International Journal of Energy Economics and Policy, 2(2), 55–62.

    Google Scholar 

  3. Abrigo, M. R. M., & Love, I. (2015). Estimation of panel vector autoregression in stata: A package of programs, p. 28. https://doi.org/10.1017/cbo9781107415324.004.

  4. Achour, H., & Belloumi, M. (2016). Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2015.12.023.

    Article  Google Scholar 

  5. Ajanovic, A., & Haas, R. (2011). On the future relevance of biofuels for transport in EU-15 countries. WIT Transactions on Ecology and the Environment, 143, 97–108. https://doi.org/10.2495/ESUS110091.

    CAS  Article  Google Scholar 

  6. Ajanovic, A., & Haas, R. (2016). Dissemination of electric vehicles in urban areas: Major factors for success. Energy. https://doi.org/10.1016/j.energy.2016.05.040.

    Article  Google Scholar 

  7. Alshehry, A. S., & Belloumi, M. (2017). Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 75, 1339–1347. https://doi.org/10.1016/j.rser.2016.11.122.

    CAS  Article  Google Scholar 

  8. Andrews, D. W. K., & Lu, B. (2001). Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models. Journal of Econometrics, 101(1), 123–164. https://doi.org/10.1016/S0304-4076(00)00077-4.

    Article  Google Scholar 

  9. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), 29–51. https://doi.org/10.1016/0304-4076(94)01642-D.

    Article  Google Scholar 

  10. Azam, M., Othman, J., Begum, R. A., Abdullah, S. M. S., & Nor, N. G. M. (2016). Energy consumption and emission projection for the road transport sector in Malaysia: An application of the LEAP model. Environment, Development and Sustainability, 18(4), 1027–1047. https://doi.org/10.1007/s10668-015-9684-4.

    Article  Google Scholar 

  11. Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389–3413. https://doi.org/10.1016/j.proci.2016.09.009.

    CAS  Article  Google Scholar 

  12. Ben Abdallah, K., Belloumi, M., & De Wolf, D. (2013). Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector. Renewable and Sustainable Energy Reviews, 25, 34–43. https://doi.org/10.1016/j.rser.2013.03.066.

    Article  Google Scholar 

  13. Boccard, N. (2009). Capacity factor of wind power realized values vs. estimates. Energy Policy, 37(7), 2679–2688. https://doi.org/10.1016/j.enpol.2009.02.046.

    Article  Google Scholar 

  14. Burke, P. J., & Csereklyei, Z. (2016). Understanding the energy-GDP elasticity: A sectoral approach. Energy Economics, 58, 199–210. https://doi.org/10.1016/j.eneco.2016.07.004.

    Article  Google Scholar 

  15. Camarero, M., Forte, A., Garcia-donato, G., Men-, Y., & Ordo, J. (2015). Variable selection in the analysis of energy consumption-growth nexus. Energy Economics. https://doi.org/10.1016/j.eneco.2015.10.012.

    Article  Google Scholar 

  16. Cansino, J. M., de Pablo-Romero, M., Román, R., & Yñiguez, R. (2012). Promotion of biofuel consumption in the transport sector: An EU-27 perspective. Renewable and Sustainable Energy Reviews, 16(8), 6013–6021. https://doi.org/10.1016/j.rser.2012.06.011.

    Article  Google Scholar 

  17. Chandran, V. G. R., & Tang, C. F. (2013). The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renewable and Sustainable Energy Reviews, 24, 445–453. https://doi.org/10.1016/j.rser.2013.03.054.

    Article  Google Scholar 

  18. Coffman, M., Bernstein, P., & Wee, S. (2017). Integrating electric vehicles and residential solar PV. Transport Policy, 53, 30–38. https://doi.org/10.1016/j.tranpol.2016.08.008.

    Article  Google Scholar 

  19. Costantini, V., & Martini, C. (2010). The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data. Energy Economics, 32(3), 591–603. https://doi.org/10.1016/j.eneco.2009.09.013.

    Article  Google Scholar 

  20. Eliasson, J., & Proost, S. (2015). Is sustainable transport policy sustainable? Transport Policy, 37, 92–100. https://doi.org/10.1016/j.tranpol.2014.09.010.

    Article  Google Scholar 

  21. European Commission. (2016). Transport in Figures 2015. https://doi.org/10.2832/861735.

  22. Flora, R., Marques, A. C., & Fuinhas, J. A. (2014). Wind power idle capacity in a panel of European countries. Energy, 66, 823–830. https://doi.org/10.1016/j.energy.2013.12.061.

    Article  Google Scholar 

  23. Ibrahiem, D. M. (2017). Road energy consumption, economic growth, population and urbanization in Egypt: Cointegration and causality analysis. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-017-9922-z.

    Article  Google Scholar 

  24. Liddle, B., & Lung, S. (2013). The long-run causal relationship between transport energy consumption and GDP: Evidence from heterogeneous panel methods robust to cross-sectional dependence. Economics Letters (Vol. 121). https://doi.org/10.1016/j.econlet.2013.10.011.

    Article  Google Scholar 

  25. Love, I., & Zicchino, L. (2006). Financial development and dynamic investment behavior: Evidence from panel VAR. Quarterly Review of Economics and Finance, 46(2), 190–210. https://doi.org/10.1016/j.qref.2005.11.007.

    Article  Google Scholar 

  26. Mahmoudzadeh Andwari, A., Pesiridis, A., Rajoo, S., Martinez-Botas, R., & Esfahanian, V. (2017). A review of battery electric vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 78(February), 414–430. https://doi.org/10.1016/j.rser.2017.03.138.

    Article  Google Scholar 

  27. Månsson, A. (2016). Energy security in a decarbonised transport sector: A scenario based analysis of Sweden’s transport strategies. Energy Strategy Reviews, 13–14, 236–247. https://doi.org/10.1016/j.esr.2016.06.004.

    Article  Google Scholar 

  28. Marques, S., Reis, L., Afonso, J. L., & Silva, C. (2016). Energy rating methodology for light-duty vehicles: Geographical impact. Environment, Development and Sustainability, 18(5), 1501–1519. https://doi.org/10.1007/s10668-016-9776-9.

    Article  Google Scholar 

  29. Mraihi, R., ben Abdallah, K., & Abid, M. (2013). Road transport-related energy consumption: Analysis of driving factors in Tunisia. Energy Policy, 62, 247–253. https://doi.org/10.1016/j.enpol.2013.07.007.

    Article  Google Scholar 

  30. Neves, S. A., Marques, A. C., & Fuinhas, J. A. (2017). Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis. Transport Policy, 59(July), 64–70. https://doi.org/10.1016/j.tranpol.2017.07.004.

    Article  Google Scholar 

  31. Nocera, S., & Cavallaro, F. (2016). The competitiveness of alternative transport fuels for CO2 emissions. Transport Policy, 50, 1–14. https://doi.org/10.1016/j.tranpol.2016.05.013.

    Article  Google Scholar 

  32. Omri, A. (2014). An international literature survey on energy-economic growth nexus: Evidence from country-specific studies. Renewable and Sustainable Energy Reviews, 38, 951–959. https://doi.org/10.1016/j.rser.2014.07.084.

    Article  Google Scholar 

  33. Payne, J. E. (2010). A survey of the electricity consumption-growth literature. Applied Energy, 87(3), 723–731. https://doi.org/10.1016/j.apenergy.2009.06.034.

    Article  Google Scholar 

  34. Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951.

    Article  Google Scholar 

  35. Razeghi, G., & Samuelsen, S. (2016). Impacts of plug-in electric vehicles in a balancing area. Applied Energy, 183, 1142–1156. https://doi.org/10.1016/j.apenergy.2016.09.063.

    Article  Google Scholar 

  36. Saboori, B., Sapri, M., & bin Baba, M. (2014). Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified bi-directional relationship approach. Energy, 66, 150–161. https://doi.org/10.1016/j.energy.2013.12.048.

    CAS  Article  Google Scholar 

  37. Sanz, M. T., Cansino, J. M., González-Limón, J. M., Santamaría, M., & Yñiguez, R. (2014). Economic assessment of CO2 emissions savings in Spain associated with the use of biofuels for the transport sector in 2010. Utilities Policy, 29, 25–32. https://doi.org/10.1016/j.jup.2014.04.002.

    Article  Google Scholar 

  38. Shafiei, E., Davidsdottir, B., Leaver, J., Stefansson, H., & Asgeirsson, E. I. (2017). Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: A simulation-based comparison between hydrogen and electricity. Journal of Cleaner Production, 141, 237–247. https://doi.org/10.1016/j.jclepro.2016.09.064.

    CAS  Article  Google Scholar 

  39. Talbi, B. (2017). CO2 emissions reduction in road transport sector in Tunisia. Renewable and Sustainable Energy Reviews, 69, 232–238. https://doi.org/10.1016/j.rser.2016.11.208.

    CAS  Article  Google Scholar 

  40. Tang, C. F., & Shahbaz, M. (2013). Sectoral analysis of the causal relationship between electricity consumption and real output in Pakistan. Energy Policy, 60, 885–891. https://doi.org/10.1016/j.enpol.2013.05.077.

    Article  Google Scholar 

  41. Tiba, S., & Omri, A. (2017). Literature survey on the relationships between energy, environment and economic growth. Renewable and Sustainable Energy Reviews, 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113.

    Article  Google Scholar 

  42. World Energy Council. (2011). World Energy Scenarios: Global Transport Scenarios 2050. https://www.worldenergy.org/wp-content/uploads/2012/09/wec_transport_scenarios_2050.pdf.

  43. Wu, H.-M., & Xu, W. (2014). Cargo transport energy consumption factors analysis: Based on LMDI decomposition technique. IERI Procedia, 9, 168–175. https://doi.org/10.1016/j.ieri.2014.09.058.

    Article  Google Scholar 

  44. Xu, B., & Lin, B. (2015a). Factors affecting carbon dioxide (CO2) emissions in China’s transport sector: a dynamic nonparametric additive regression model. Journal of Cleaner Production, 101, 311–322. https://doi.org/10.1016/j.jclepro.2015.03.088.

    CAS  Article  Google Scholar 

  45. Xu, B., & Lin, B. (2015b). Carbon dioxide emissions reduction in China’s transport sector: A dynamic VAR (vector autoregression) approach. Energy, 83, 486–495. https://doi.org/10.1016/j.energy.2015.02.052.

    CAS  Article  Google Scholar 

  46. Zhang, H., & Chen, W. (2015). The role of biofuels in China’s transport sector in carbon mitigation scenarios. Energy Procedia, 75, 2700–2705. https://doi.org/10.1016/j.egypro.2015.07.682.

    Article  Google Scholar 

  47. Zhang, H., Chen, W., & Huang, W. (2016). TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective. Applied Energy, 162, 1505–1514. https://doi.org/10.1016/j.apenergy.2015.08.124.

    Article  Google Scholar 

  48. Zhang, M., Li, H., Zhou, M., & Mu, H. (2011). Decomposition analysis of energy consumption in Chinese transportation sector. Applied Energy, 88(6), 2279–2285. https://doi.org/10.1016/j.apenergy.2010.12.077.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the NECE-UBI, the Research Unit in Business Science and Economics, sponsored by the Portuguese Foundation for the Development of Science and Technology, Ministry of Science, Technology and Higher Education, Project UID/GES/04630/2013, is gratefully acknowledged. We also would like to express our acknowledgments to the anonymous reviewers for the valuable and useful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to António Cardoso Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neves, S.A., Marques, A.C. & Fuinhas, J.A. Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?. Environ Dev Sustain 20, 23–40 (2018). https://doi.org/10.1007/s10668-018-0153-8

Download citation

Keywords

  • Energy consumption
  • Transport sector
  • Conventional sources
  • Electricity
  • Renewable fuels
  • CO2 emissions