Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method

  • Ajaykumar Kadam
  • Animesh S. Karnewar
  • Bhavana Umrikar
  • R. N. Sankhua
Article
  • 17 Downloads

Abstract

Watersheds from semiarid regions are more sensitive to hydrological processes and sustainability of water resources than humid regions. Hence, it is indispensable to determine the response of watersheds to hydrological processes for water resource management. Thus, the hydrological response-based watershed prioritization study has been undertaken for eight sub-watersheds from semiarid, basaltic region of Western Ghats of India. Intent to this, a novel index has been parameterized using thematic layers such as drainage density, geology, soil, slope, landform classification, land use/land cover, rainfall and runoff (DGSLR). This study evaluates the performance of DGSLR index using three models, namely analytical hierarchy process (AHP), frequency ratio (FR) and fuzzy logic for sub-watershed-wise prioritization. The FR ratio showed the highest value for very high drainage density (8.73) indicating most probability for a high hydrological response. According to AHP weight, most influencing factors to hydrological processes are precipitation (25%), slope (19%) and land use/land cover (14%) followed by landform classification (11%). These three methods are prioritized study area into four classes, i.e., very high, high, moderate and low using area-weighted average method. These models showed that very high-priority area lies near the outlet of the watershed as well as the upper part of the watershed in high to very high priority in all three models. It covers 33.12% of the total area having a high average slope with high drainage density in sub-watersheds 1, 3, 7 and 8. The predictive capability of DGSLR index was computed by the area under the curve (AUC) and receiver operating characteristic (ROC) method, revealed average accuracy for FR method (AUC = 89%) better than AHP method (AUC = 77%) and fuzzy logic (AUC = 76%). This novel index could be used by the water resources researchers and planners in any terrain to understand the hydrological response.

Keywords

Hydrological response Fuzzy logic Frequency ratio DGSLR AHP ROC 

Notes

Acknowledgements

The authors are thankful to Head, Department of Environmental Sciences, and Head, Department of Geology, S.P. Pune University, for extending their help to use the department laboratory for computing facilities. Authors are thankful to editor and reviewers for evaluating and improving the quality of this manuscript.

References

  1. Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—A case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440–441, 75–89.  https://doi.org/10.1016/j.jhydrol.2012.03.028.
  2. Agarwal, R., & Garg, P. K. (2015). Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resources Management.  https://doi.org/10.1007/s11269-015-1159-8.Google Scholar
  3. Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511, 850–860.  https://doi.org/10.1016/j.jhydrol.2014.02.028.CrossRefGoogle Scholar
  4. Alazba, S. H. M. A. A. (2016). Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environmental Earth Sciences, 75(4), 1–28.  https://doi.org/10.1007/s12665-015-5156-2.Google Scholar
  5. Alvarado, A., Esteller, M. V., Quentin, E., & Expósito, J. L. (2016). Multi-criteria decision analysis and GIS approach for prioritization of drinking water utilities protection based on their vulnerability to contamination. Water Resources Management, 30(4), 1549–1566.  https://doi.org/10.1007/s11269-016-1239-4.CrossRefGoogle Scholar
  6. Amin, M. G. M., Veith, T. L., Collick, A. S., Karsten, H. D., & Buda, A. R. (2017). Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agricultural Water Management, 180, 212–223.  https://doi.org/10.1016/j.agwat.2016.07.011.CrossRefGoogle Scholar
  7. Anderson J. R., Hardy E. E., & Roach J. T. (1972). A land-use classification system for use with remote-sensor data. US Geological Survey Circle 671, 16Google Scholar
  8. Aouragh, M. H., Essahlaoui, A., Ouali, A. El, & Hmaidi, A. El. (2016). Groundwater potential of Middle Atlas plateaus, Morocco, using fuzzy logic approach, GIS and remote sensing. Geomatics, Natural Hazards and Risk.  https://doi.org/10.1080/19475705.2016.1181676.Google Scholar
  9. Basahi, J., Masoud, M., & Zaidi, S. (2016). Integration between morphometric parameters, hydrologic model, and geo-informatics techniques for estimating WADI runoff (case study WADI HALYAH—Saudi Arabia). Arabian Journal of Geosciences, 9(13), 1–18.  https://doi.org/10.1007/s12517-016-2649-6.CrossRefGoogle Scholar
  10. Bates, P. D. (2004). Remote sensing and flood inundation modelling. Hydrological Processes, 18(13), 2593–2597.Google Scholar
  11. Gashaw, T., Tulu, T., & Argaw, M. (2017). Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environmental Systems Research.  https://doi.org/10.1186/s40068-016-0078-x.Google Scholar
  12. Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment, 619–620, 1394–1408.  https://doi.org/10.1016/j.scitotenv.2017.11.191.CrossRefGoogle Scholar
  13. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.Google Scholar
  14. Jaiswal, R. K., Ghosh, N. C., Galkate, R. V., & Thomas, T. (2015). Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic Procedia, 4, 1553–1560.  https://doi.org/10.1016/j.aqpro.2015.02.201.CrossRefGoogle Scholar
  15. Jiang, Y., Liu, C., Li, X., Liu, L., & Wang, H. (2015). Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment. Environmental Modelling and Software, 67, 72–88.  https://doi.org/10.1016/j.envsoft.2015.01.008.CrossRefGoogle Scholar
  16. Jódar, J., Carpintero, E., Martos-Rosillo, S., Ruiz-Constán, A., Marín-Lechado, C., Cabrera-Arrabal, J. A., et al. (2018). Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain). Science of the Total Environment, 625, 285–300.  https://doi.org/10.1016/j.scitotenv.2017.12.300.CrossRefGoogle Scholar
  17. Kadam, A. K., Jaweed, T. H., Umrikar, B. N., Hussain, K., & Sankhua, R. N. (2017). Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Modeling Earth Systems and Environment.  https://doi.org/10.1007/s40808-017-0386-9.Google Scholar
  18. Kadam, A. K., Kale, S. S., Pande, N. N., Pawar, N. J., & Sankhua, R. N. (2012). Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of Western India. Using SCS-CN method. Water Resources Management, 26(9), 2537–2554.  https://doi.org/10.1007/s11269-012-0031-3.CrossRefGoogle Scholar
  19. Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2013). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4), 1385–1401.  https://doi.org/10.1007/s12517-013-0849-x.CrossRefGoogle Scholar
  20. Khadse, G. K., Vijay, R., & Labhasetwar, P. K. (2015). Prioritization of catchments based on soil erosion using remote sensing and GIS. Environmental Monitoring and Assessment, 187(6), 333.  https://doi.org/10.1007/s10661-015-4545-z.CrossRefGoogle Scholar
  21. Kinthada, N. R., Gurram, M. K., & Eedara, A. (2013). Remote sensing and GIS in the geomorphometric analysis of micro- watersheds for hydrological Scenario assessment and characterization: A study on Sarada river basin, Visakhapatnam district, India. International Journal of Geomatics and Geosciences, 4(1), 195–212.Google Scholar
  22. Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S., & Elmqvist, T. (2016). Environmental science & policy bridging the gap between ecosystem service assessments and land-use planning through multi-criteria decision analysis (MCDA). Environmental Science & Policy.  https://doi.org/10.1016/j.envsci.2016.02.013.Google Scholar
  23. Lee, S., Yeo, I.-Y., Sadeghi, A. M., McCarty, G. W., Hively, W. D., Lang, M. W., et al. (2017). Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change scenarios using SWAT model. Hydrology and Earth System Sciences Discussions.  https://doi.org/10.5194/hess-2017-178.Google Scholar
  24. Mogaji, K. A. (2017). Development of AHPDST vulnerability indexing model for groundwater vulnerability assessment using hydrogeophysical derived parameters and GIS application. Pure and Applied Geophysics, 174(4), 1787–1813.  https://doi.org/10.1007/s00024-017-1499-9.CrossRefGoogle Scholar
  25. Molina-Navarro, E., Hallack-Alegría, M., Martínez-Pérez, S., Ramírez-Hernández, J., Mungaray-Moctezuma, A., & Sastre-Merlín, A. (2015). Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico. Agricultural Water Management.  https://doi.org/10.1016/j.agwat.2015.10.029.Google Scholar
  26. Nag., S. K., & Ghosh, P. (2013). Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques. Environmental Earth Sciences, 70(5), 2115–2127.Google Scholar
  27. Napoli, M., Massetti, L., & Orlandini, S. (2017). Hydrological response to land use and climate changes in a rural hilly basin in Italy. CATENA, 157, 1–11.  https://doi.org/10.1016/j.catena.2017.05.002.CrossRefGoogle Scholar
  28. Nasiri, H., Boloorani, A. D., Sabokbar, H. A. F., Jafari, H. R., Hamzeh, M., & Rafii, Y. (2013). Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environmental Monitoring and Assessment, 185(1), 707–718.  https://doi.org/10.1007/s10661-012-2586-0.CrossRefGoogle Scholar
  29. Nigussie, T. A., & Altunkaynak, A. (2016). Assessing the hydrological response of Ayamama watershed from urbanization predicted under various landuse policy scenarios. Water Resources Management, 30, 3427–3441.  https://doi.org/10.1007/s11269-016-1360-4.CrossRefGoogle Scholar
  30. Nourani, V., Fard, A. F., Gupta, H. V., Goodrich, D. C., & Niazi, F. (2017). Hydrological model parameterization using NDVI values to account for the effects of land cover change on the rainfall–runoff response. Hydrology Research, 48(6), 1455–1473.  https://doi.org/10.2166/nh.2017.249.CrossRefGoogle Scholar
  31. Oh, H., Kim, Y., Choi, J., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172.  https://doi.org/10.1016/j.jhydrol.2010.12.027.CrossRefGoogle Scholar
  32. Patel, D. P., Gajjar, C. A., & Srivastava, P. K. (2013). Prioritization of Malesari mini-watersheds through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences, 69(8), 2643–2656.  https://doi.org/10.1007/s12665-012-2086-0.CrossRefGoogle Scholar
  33. Paul, M., Rajib, M. A., & Ahiablame, L. (2017). Spatial and temporal evaluation of hydrological response to climate and land use change in three South Dakota watersheds. JAWRA Journal of the American Water Resources Association, 53(1), 69–88.  https://doi.org/10.1111/1752-1688.12483.CrossRefGoogle Scholar
  34. Rabu, P. P., & Askaran, R. B. (2013). Drainage morphometry of upper Vaigai river sub-basin, Western Ghats, South India using remote sensing and GIS. Journal of the Geological Society of India, 82, 519–528.CrossRefGoogle Scholar
  35. Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.Google Scholar
  36. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.Google Scholar
  37. Sajinkumar, K. S., & Anbazhagan, S. (2015). Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India. Natural Hazards, 75(1), 953–973.  https://doi.org/10.1007/s11069-014-1358-2.CrossRefGoogle Scholar
  38. Samal, D. R., et al. (2015). GIS based drainage morphometry and its influence on hydrology in parts of Western Ghats region, Maharashtra, India. Geocarto International.  https://doi.org/10.1080/10106049.2014.978903.Google Scholar
  39. Sarma, S., & Saikia, T. (2012). Prioritization of sub-watersheds in Khanapara–Bornihat Area of Assam–Meghalaya (India) based on land use and slope analysis using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 40(3), 435–446.  https://doi.org/10.1007/S12524-011-0163-6.CrossRefGoogle Scholar
  40. Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. International Soil and Water Conservation Research, 5(3), 202–211.  https://doi.org/10.1016/j.iswcr.2017.05.006.CrossRefGoogle Scholar
  41. Strahler A. N. (1964). Quantitative geomorphology of drainage basin and channel network. Handbook of Applied Hydrology, 39–76.Google Scholar
  42. Sujatha, E. R., Selvakumar, R., & Rajasimman, B. (2014). Watershed prioritization of Palar sub-watershed based on the morphometric and land use analysis. Journal of Mountain Science, 11(4), 906–916.  https://doi.org/10.1007/s11629-012-2628-7.CrossRefGoogle Scholar
  43. Sunde, M. G., He, H. S., Hubbart, J. A., & Urban, M. A. (2017). Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed-use watershed. Hydrological Processes, 31(9), 1790–1803.  https://doi.org/10.1002/hyp.11150.CrossRefGoogle Scholar
  44. Umrikar, B. N. (2016). Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, 7(5), 2231–2243.  https://doi.org/10.1007/s13201-016-0390-7.CrossRefGoogle Scholar
  45. Vollmer, D., Pribadi, D. O., Remondi, F., Rustiadi, E., & Grêt-Regamey, A. (2016). Prioritizing ecosystem services in rapidly urbanizing river basins: A spatial multi-criteria analytic approach. Sustainable Cities and Society, 20, 237–252.  https://doi.org/10.1016/j.scs.2015.10.004.CrossRefGoogle Scholar
  46. Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Graf, A., Lin, H. S., Drüe, C., et al. (2016). Changes in measured spatiotemporal patterns of hydrological response after partial deforestation in a headwater catchment. Journal of Hydrology.  https://doi.org/10.1016/j.jhydrol.2016.09.037.Google Scholar
  47. Worku, T., Khare, D., & Tripathi, S. K. (2017). Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environmental Earth Sciences, 76(16), 1–14.  https://doi.org/10.1007/s12665-017-6883-3.CrossRefGoogle Scholar
  48. Zhang, Y., Cheng, G., Li, X., Jin, H., Yang, D., Flerchinger, G. N., et al. (2017). Influences of frozen ground and climate change on hydrological processes in an Alpine Watershed: A case study in the upstream area of the Hei’he River, Northwest China. Permafrost and Periglacial Processes, 28(2), 420–432.  https://doi.org/10.1002/ppp.1928.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental SciencesSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of Computer EngineeringPune Institute of Computer Technology, PICTPuneIndia
  3. 3.Department of GeologySavitribai Phule Pune UniversityPuneIndia
  4. 4.Basin Planning, Central Water CommissionNew DelhiIndia

Personalised recommendations