Skip to main content
Log in

ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In the present investigation, hybrid treatment process has been developed for the treatment of synthetic dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial ZnO powder has been used as a nano-photocatalyst for the degradation of rhodamine-B dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis process alone has shown the 33% of decolorization, whereas ceramic nanofiltration has shown the 50% of decolorization. Integration of photocatalysis and ceramic nanofiltration were shown 96% of dye decolorization over 90 min of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akyol, A., Yatmaz, H. C., & Bayramoglu, M. (2004). Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 54, 19–24.

    Article  CAS  Google Scholar 

  • Ali, A. M., Emanuelsson, E. A. C., & Patterson, D. A. (2010). Photocatalysis with nanostructured zinc oxide thin films: The relationship between morphology and photocatalytic activity under oxygen limited and oxygen rich conditions and evidence for a Mars Van Krevelen mechanism. Applied Catalysis B: Environmental, 97, 168–181.

    Article  CAS  Google Scholar 

  • Athanasekou, C. P., Moustakas, N. G., Katsaros, F. K., Kontos, A. G., Romanos, G. E., Morales-Torres, S., et al. (2013). Ceramic membranes in hybrid photocatalysis/ultrafiltration processes. In Proceedings of the 13th international conference on environmental science and technology Athens, Greece.

  • Banate, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Bioresource Technology, 58, 217–227.

    Article  Google Scholar 

  • Baslak, C., Arslan, G., Kusc, M., & Cengeloglu, Y. (2016). Removal of Rhodamine B from water by using CdTeSe quantum dot-cellulose membrane composites. RSC Advances, 6, 18549.

    Article  CAS  Google Scholar 

  • Berberidou, C., Avlonitis, S., & Poulios, I. (2009). Dyestuff effluent treatment by integrated sequential photocatalytic oxidation and membrane filtration. Desalination, 249, 1099–1106.

    Article  CAS  Google Scholar 

  • Buscio, V., Brosillon, S., Mendret, J., Crespi, M., & Gutiérrez-Bouzán, C. (2015). Photocatalytic membrane reactor for the removal of C.I. Disperse Red 73. Materials, 8, 3633–3647.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Chatterjee, S., Chatterjee, B. P., Das, A. R., & Guha, A. K. (2005). Journal of Colloid and Interface Science, 288, 30–35.

    Article  CAS  Google Scholar 

  • Cui, P., Zhao, X. Z., Zhou, M. J., et al. (2006). Photocatalysis-membrane coupling reactor and its application (in Chinese). Chinese Journal of Catalysis (Chinese Version), 27, 752–754.

    Article  CAS  Google Scholar 

  • Cullity, B. D. (1967). Elements of X-ray diffraction (3rd ed.). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Damodar, R. A., You, S. J., & Ou, S. H. (2010). Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 76, 64–71.

    Article  CAS  Google Scholar 

  • Danwittayakul, S., Jaisai, M., & Dutta, J. (2013). Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ZTO) on porous substrates. Industrial and Engineering Chemistry Research, 52, 13629–13636.

    Article  CAS  Google Scholar 

  • Danwittayakul, S., Jaisai, M., & Dutta, J. (2015). Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Applied Catalysis B: Environmental, 163, 1–8.

    Article  CAS  Google Scholar 

  • Elamin, N., & Elsanousi, A. (2013). Synthesis of ZnO nanostructures and their photocatalytic activity. Journal of Applied and Industrial Sciences, 1(1), 32–35.

    CAS  Google Scholar 

  • El-Kemary, M., El-Shamy, H., & El-Mehasseb, I. (2010). Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence, 130, 2327–2331.

    Article  CAS  Google Scholar 

  • Engenidou, E., Fytianos, K., & Poulios, I. (2005). Applied Catalysis B: Environmental, 59, 81–89.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photo catalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760.

    Article  CAS  Google Scholar 

  • Gilmore, F. W. (2003). Electrocoagulation chamber and method. In US. Patent no 6613217 B1.

  • Grzechulska-Damszel, J., Mozia, S., & Morawski, A. W. (2010). Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Catalysis Today, 156, 295–300.

    Article  CAS  Google Scholar 

  • Hairom, N. H. H., Mohammad, A. W., & Kadhum, A. A. H. (2014). Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation and Purification Technology, 137, 74–81.

    Article  CAS  Google Scholar 

  • Herrmann, J. M., Duchamp, C., Karkmaz, M., Hoai, B. T., Lachheb, H., Puzenat, E., et al. (2007). Environmental green chemistry as defined by photo catalysis. Journal of Hazardous Materials, 146, 624–629.

    Article  CAS  Google Scholar 

  • Huang, J., Xu, X., Gu, C., Wang, W., Geng, B., Sun, Y., et al. (2012). Effective VOCs gas sensor based on porous SnO2 microcubes prepared via spontaneous phase segregation. Sensors and Actuators B: Chemical, 173, 599–606.

    Article  CAS  Google Scholar 

  • Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO nanostructures by chemical precipitation method. Synthesis and Reactivity in Inorganic, Metal-Organicand Nano-Metal Chemistry, 41, 814–819.

    Article  CAS  Google Scholar 

  • Lee, S. A., Choo, K. H., Lee, C. H., Lee, H. I., Hyeon, T., Choi, W., et al. (2001). Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Industrial and Engineering Chemistry Research, 40, 1712–1719.

    Article  CAS  Google Scholar 

  • Liu, C. X., Zhang, D. R., He, Y., Zhao, X. S., & Bai, R. B. (2010). Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and antibacterial approaches. Journal of Membrane Science, 346, 121–130.

    Article  CAS  Google Scholar 

  • Lu, C., Wu, Y., Mai, F., Chung, W., Wu, C., Lin, W., et al. (2009). Degradation efficiencies and mechanisms of the ZnO-mediated photocatalytic degradation of Basic Blue 11 under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 310(1–2), 159–165.

    Article  CAS  Google Scholar 

  • Ma, N. (2009). Fabrication of TiO 2 photocatalytic membranes with multifunction and their performance in the application of water treatment (in Chinese), Doctoral Dissertation. Dalian: Dalian University of Technology.

  • Meng, F., Chae, S. R., Drews, A., Kraume, M., Shin, H. S., & Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43, 1489–1512.

    Article  CAS  Google Scholar 

  • Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology, 73, 71–91.

    Article  CAS  Google Scholar 

  • Nagaraja, R., Kottam, N., Girija, C. R., & Nagabhushan, B. M. (2012). Photo catalytic degradation of Rhodamine B dye under UV/solar light using ZnO nano powder synthesized by solution combustion route. Powder Technology, 215–216, 91–97.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Kumar, M. D., Selvi, K., Begum, R. A., Vanathi, T., & Yamuna, R. T. (2001). Biomass Bioengineering, 21, 477–483.

    Article  CAS  Google Scholar 

  • Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere, 46, 1173–1181.

    Article  CAS  Google Scholar 

  • Nikos, L.-S., Riga, D., Katsivela, E., Mantzavinos, D., & Xekoukoulotakis, N. P. (2010). Disinfection of spring water and secondary treated municipal wastewater by TiO2 photo catalysis. Desalination, 250, 351–355.

    Article  CAS  Google Scholar 

  • Pardeshi, S. K., & Patil, A. B. (2009). Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. Journal of Molecular Catalysis A: Chemical, 308, 32–40.

    Article  CAS  Google Scholar 

  • Pidou, M., Parsons, S. A., Raymond, G., Jeffrey, P., Stephenson, T., & Jefferson, B. (2009). Fouling control of a membrane coupled photocatalytic process treating grey water. Water Research, 43, 3932–3939.

    Article  CAS  Google Scholar 

  • Rajeswari, R., & Kanmani, S. (2009). A study on synergistic effect of photocatalytic ozonation for carbaryl degradation. Desalination, 242, 277–285.

    Article  CAS  Google Scholar 

  • Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D. K., & Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis, A: General, 490, 42–49.

    Article  CAS  Google Scholar 

  • Strunk, J., Kaher, K., Xia, X., & Muhler, M. (2009). The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surface Science, 603, 1776–1783.

    Article  CAS  Google Scholar 

  • Ullah, R., & Dutta, J. (2008). Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 156, 194–200.

    Article  CAS  Google Scholar 

  • Wong, Y., & Yu, J. (1999). Laccase-catalyzed decolorization of synthetic dyes. Journal of Water Research, 33, 3512–3520.

    Article  CAS  Google Scholar 

  • Xiaohong, W. U., Peibo, S. U., Huiling, L. I. U., & Lili, Q. I. (2009). Photocatalytic degradation of Rhodamine B under visible light with Nd-doped titanium dioxide films. Journal of Rare Earths, 27, 739–743.

    Article  Google Scholar 

  • Yang, Q. H., Meng, Y. B., Huang, X., et al. (2002). Study on membrane fouling control in a PCRMS (in Chinese). Water Purification Technology, 21, 28–30.

    CAS  Google Scholar 

  • Zahrim, A. Y., Tizaoui, C., & Hilal, N. (2011). Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 266, 1–16.

    Article  CAS  Google Scholar 

  • Zhang, A. Y., Ren, Y. H., Xiao, Y. T., Guandao, Gao., & Xiaolong, L. U. (2007). Kinetics and efficiency study on degradation process of suspended photocatalytic nanofiltration membrane reactor with Cu-modified TiO2 for atrazine aqueous solution (in Chinese). Environmental Chemistry, 26, 735–740.

    Google Scholar 

  • Zhou, J., Zhao, F., Wang, Y., Zhang, Y., & Yang, L. (2007). Size controlled synthesis of ZnO nanoparticles and their photoluminescence properties. Journal of Luminescence, 122–123, 195–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Naresh Yadav would like to thank Ministry of Human Resource Development (MHRD), Government of India and National Institute of Technology, Warangal, India, for providing the fellowship and research facilities for carrying out his doctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Naresh Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naresh Yadav, D., Anand Kishore, K., Bethi, B. et al. ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water. Environ Dev Sustain 20, 2065–2078 (2018). https://doi.org/10.1007/s10668-017-9977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-9977-x

Keywords

Navigation