Advertisement

Environment, Development and Sustainability

, Volume 18, Issue 5, pp 1297–1322 | Cite as

Understanding slums: analysis of the metabolic pattern of the Vidigal favela in Rio de Janeiro, Brazil

  • Raul F. C. Miranda
  • Carolina Grottera
  • Mario Giampietro
Article

Abstract

This paper illustrates an innovative approach to characterize the metabolic pattern of informal urban settlements or slums with the aim to better understand the factors that affect the material standard of living of slum residents, the dynamics of slum development and the interaction of the slum with its wider socioeconomic context. The proposed system of accounting, multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM), integrates socioeconomic and spatial data and studies energy and monetary flows in relation to the pattern of human activities and land uses. The theoretical basis of the approach is illustrated with data from Vidigal favela in Rio de Janeiro, Brazil. In particular, we show how to construct taxonomies of accounting categories to characterize: (1) the set of activities carried out by the slum dwellers, to which to link assessments of flow rates per hour; (2) the set of land uses or spatial elements making up the slum, to which to link assessments of flow densities per hectare. The analysis of the interaction of Vidigal with its wider socioeconomic context focuses on monetary flows and transport (job commuting).

Keywords

Slum Favela Metabolic pattern Commuting Vidigal Rio de Janeiro 

Abbreviations

BDRgr

Total built ground area occupied by buildings for the household sector

EMR

Exosomatic metabolic rate

EMRHH

Energetic metabolic rate, household sectors

EMRPW

Energetic metabolic rate, paid work sector

EMRSA

Energetic metabolic rate, societal average

ET

Energy throughput

ETHH

Exosomatic energy consumption for the HH sector

ETPW

Exosomatic energy consumption for the PW sector

FAR

Floor–area ratio

H

Hours

HA

Human activity

HAHC+LE

Time allocated to household chores, leisure and education

HAPO

“Physiological overhead,” that is the time dedicated to sleeping, eating and personal care

HAPW

Time allocated to paid work in economic activities

HC + LE

Household chores, leisure and education

IBGE

Brazilian Institute of Geography and Statistics

LPG

Liquefied petroleum gas (LPG)

LU

Land use

Mh

106 h

MuSIASEM

Multi-scale integrated analysis of societal and ecosystem metabolism

NBA

Total unbuilt area

NBApav

Paved unbuilt area

Pc

Per capita

PO

Physiological overhead

PW

Paid work sector

TBDgr

Total built ground area occupied by buildings

TBDin

Building indoors useful for hosting human activities

TET

Total exosomatic throughput (TET = ETPW + ETHH)

THA

Total human activity (in h)

Notes

Acknowledgments

This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Union Framework Programme, under project NETEP-European Brazilian Network on Energy Planning (PIRSES-GA-2013-612263). The authors would also like to express their gratitude to the Coordination for the Improvement of Higher Education Personnel (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the essential support given for this work to be carried out. The authors would like to thank Eduardo Heck de Sá (United Nations Human Settlements Programme, UN-Habitat) for providing valuable data sets, Victoria Neves Santos for her input in an earlier version of this paper and Sandra G.F. Bukkens for editing the paper. We are grateful to the reviewers for their useful comments and suggestions.

References

  1. Abend, C. (2014, December). Nas comunidades pacificadas, o mercado integra—Qualidade de Vida. Economia Rio International Magazine yr. 01, ed. 4.Google Scholar
  2. Ahmad, S., & De Oliveira, J. S. P. (2015). Fuel switching in slum and non-slum households in urban India. Journal of Cleaner Production, 94(1), 130–136.CrossRefGoogle Scholar
  3. Carvalho, C. H. R. (2011). Emissões Relativas de Poluentes do Transporte Motorizado de Passageiros nos Grandes Centros Urbanos Brasileiros. Brasilia: Instituto de Pesquisa Econômica Aplicada.Google Scholar
  4. Castells-Quintana, D. (2016). Malthus living in a slum: Urban concentration, infrastructure and economic growth. Journal of Urban Economics, 92, 31–47.CrossRefGoogle Scholar
  5. Cavallieri, F., & Vial, V. (2012). Favelas na cidade do Rio de Janeiro: o quadro populacional com base no Censo 2010: Coleção Estudos Cariocas. Rio de Janeiro: Instituto Pereira Passos.Google Scholar
  6. Cohen, C., Alcantara, D., Luana Moreira De Souza, F., Pilo, F. (2010). Análise Do Consumo De Energia Elétrica Através Do Perfil De Uso E Posse De Equipamentos Em Favelas Do Rio De Janeiro. In Xiii Congresso Brasileiro De Energia, 2010, Rio De Janeiro. Xiii Congresso Brasileiro De Energia ? Coppe/UFRJ. Rio De Janeiro: Coppe/UFRJ.Google Scholar
  7. Cohen, C., Martins, V. A., Weiss, M. (2012). Análise do Padrão de Consumo de Energia Elétrica e do Indicador de Intensidade Energética em Comunidades de Baixo Poder Aquisitivo do Rio De Janeiro. In Xiv Congresso Brasileiro De Energia, 2012, Rio De Janeiro. Xiv Congresso Brasileiro De Energia - Sociedade, Energia E Meio Ambiente - Anais 2012 (Vol. 2, pp. 763–774). Rio De Janeiro: Coppe UFRJ.Google Scholar
  8. Cunha, M. B. A. M. (2000). Perfil Sócio Econômico das Favelas da Cidade do Rio de Janeiro. Rio de Janeiro: Instituto de Estudos do Trabalho e Sociedade.Google Scholar
  9. D’Alisa, G., Di Nola, M. F., & Giampietro, M. (2012). A multi-scale analysis of urban waste metabolism: Density of waste disposed in Campania. Journal of Cleaner Production, 35, 59–70.CrossRefGoogle Scholar
  10. Data Favela. (2013). As Favelas Brasileiras, um mercado de R$ 56 bilhões. Technical Report. Rio de Janeiro: Instituto Data Favela.Google Scholar
  11. Diaz-Maurin, F., & Giampietro, M. (2013). A “Grammar” for assessing the performance of power-supply systems: Comparing nuclear energy to fossil energy. Energy, 49, 162–177.CrossRefGoogle Scholar
  12. Dimsky, G. A. (2011). Ten ways to see a favela: Notes on the political economy of the new city. Revista Economica, 13(1), 7–36.Google Scholar
  13. Firjan, N. (2015). O custo dos deslocamentos nas principais áreas urbanas do Brasil: Pesquisas e Estudos Socioeconômicos. Rio de Janeiro: Federação das Indústrias do Estado do Rio de Janeiro.Google Scholar
  14. Georgescu-Roegen, N. (1971). The Entropy Law and the Economic Process. Cambridge: Harvard University PressCrossRefGoogle Scholar
  15. Giampietro, M., Aspinall, R. J., Ramos-Martin, J., & Bukkens, S. G. F. (2014). Resource accounting for sustainability assessment. Abingdon: Routledge.Google Scholar
  16. Giampietro, M., Mayumi, K., & Ramos-Martin, J. (2009). Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy, 34, 313–322.CrossRefGoogle Scholar
  17. Giampietro, M., Mayumi, K., & Sorman, A. H. (2012). The metabolic pattern of societies—Where economists fall short. Abingdon: Routledge.Google Scholar
  18. Giampietro, M., Mayumi, K., & Sorman, A. H. (2013). Energy analysis for a sustainable future: Multi-scale integrated analysis of societal and ecosystem metabolism. Abingdon: Routledge.Google Scholar
  19. Haddad, E. A., Vieira, R. S. (2015). Mobilidade, Acessibilidade e Produtividade: Nota Sobre a Valoração Econômica do Tempo de Viagem na Região Metropolitana de São Paulo. Núcleo de Economia Regional e Urbana, Universidade de São Paulo, 2015, São Paulo.Google Scholar
  20. IBGE. (2010a). Aglomerados Subnormais - Informações Territoriais: Censo Demográfico 2010. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
  21. IBGE. (2010b). Pesquisa de Orçamentos Familiares 2008–2009—Despesas, rendimentos e condições de vida; Microdados. Diretoria de Pesquisas - Coordenação de Trabalho e Rendimento. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
  22. IBGE. (2010c). Pesquisa Nacional de Amostra por Domicílio 2009; Microdados.Diretoria de Pesquisas - Coordenação de Trabalho e Rendimento. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
  23. IBGE. (2011). Pesquisa Anual de Serviços. Coordenação das Estatísticas Econômicas e Classificações, Coordenação de Serviços e Comércio. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
  24. IBGE. (2015). Sistema Nacional de Índices de Preços ao Consumidor (IBGE/SNIPC). http://www.ipeadata.gov.br/. Accessed Aug 2015.
  25. Iorgulescu, R. I. (2014). Poverty, socioeconomic metabolism, and the multi-scale integrated analysis approach. Procedia Economics and Finance, 8, 407–413.CrossRefGoogle Scholar
  26. IPEA, & ANTP. (1999). Redução das deseconomias urbanas com a melhoria do transporte público: Revista dos Transportes Públicos - Custo Social do Transporte. [s.l.] Instituto de Pesquisa Econômica Aplicada - Ipea; Associação Nacional dos Transportes Públicos - ANTP.Google Scholar
  27. IPP, Instituto Pereira Passos, Poloponsky, K., Caballero, B., Stein, I., & Pessoa, M. (2014). Pesquisasobre a Juventude das Favelas Pacificadas: Projeto Agentes da Transformação. Technical - Note 28. Rio de Janeiro, Brazil.Google Scholar
  28. Jannuzzi, G. M., & Sanga, G. A. (2004). LPG subsidies in Brazil: An estimate. Energy for Sustainable Development, 8(3), 127–129.CrossRefGoogle Scholar
  29. Karekezi, S., Kimani, J., & Onguru, O. (2008). Energy access among the urban poor in Kenya. Energy for Sustainable Development, 12(4), 38–48.CrossRefGoogle Scholar
  30. Lall, S. V., Lundberg, M. K. A., & Shalizi, Z. (2008). Implications of alternate policies on welfare of slum dwellers: Evidence from Pune, India. Journal of Urban Economics, 63(1), 56–73.CrossRefGoogle Scholar
  31. Lau, J. C. Y., & Chiu, C. C. H. (2003). Accessibility of low-income workers in Hong Kong. Cities, 20(3), 197–204.CrossRefGoogle Scholar
  32. Lucas, K. (2012). Transport and social exclusion: Where are we now? Transport Policy, 20, 105–113.CrossRefGoogle Scholar
  33. Miranda, R. F. C., Santos, V. E. N., Giampietro, M. (2015). Informal settlements as socio-ecological systems: The metabolic pattern of Vidigal slum in Rio de Janeiro. ICEE. Anais. In 2nd international conference on energy and environment: Bringing together engineering and economics. Guimarães, Portugal.Google Scholar
  34. MMA. (2010). 1o Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários. Brasilia: Secretaria de Mudanças Climáticas e Qualidade Ambiental Diretoria de Mudanças Climáticas, Ministério do Meio Ambiente.Google Scholar
  35. Motte-Baumvol, B., & Nassi, C. D. (2012). Immobility in Rio de Janeiro, beyond poverty. Journal of Transport Geography, 24, 67–76.CrossRefGoogle Scholar
  36. Musango, J. K. (2014). Household electricity access and consumption behaviour in an urban environment: The case of Gauteng in South Africa. Energy for Sustainable Development, 23, 305–316.CrossRefGoogle Scholar
  37. Oliveira, F., et al. (2012). UPPs, direitos e justiça - Um estudo de caso das favelas do Vidigal e do Cantagalo. Rio de Janeiro: Fundação Getúlio Vargas.Google Scholar
  38. Pamuk, A., & Cavallieri, P. F. A. (1998). Alleviating urban poverty in a global city: New trends in upgrading Rio-de-Janeiro’s favelas. Habitat International, 22(4), 449–462.CrossRefGoogle Scholar
  39. Parikh, P., Fu, K., Parikh, H., McRobie, A., & George, G. (2015). Infrastructure provision, gender, and poverty in Indian slums. World Development, 66, 468–486.CrossRefGoogle Scholar
  40. Pearce, D. W., & Turner, R. K. (1989). Economics of natural resources and the environment. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
  41. Pereira, R. H. M., & Schwanen, T. (2013). Tempo de Deslocamento Casa-Trabalho no Brasil (1992-2009): Diferenças entre Regiões Metropolitanas, Níveis de Renda e Sexo. Brasilia: Instituto de Pesquisa Econômica Aplicada.Google Scholar
  42. Perman, R., et al. (2003). Natural resource and environmental economics (3rd ed.). Harlow: Pearson-Addison Wesley.Google Scholar
  43. Piller, R. (2012). Epidemiology of Tuberculosis. Pulmão RJ, 21(1), 4–9.Google Scholar
  44. Power, A. (2012). Social inequality, disadvantaged neighbourhoods and transport deprivation: An assessment of the historical influence of housing policies. Journal of Transport Geography, 21, 39–48.CrossRefGoogle Scholar
  45. Pritchard, J. P., et al. (2014). Spatial analysis of transportation-related social exclusion in the Lisbon metropolitan area. Procedia-Social and Behavioral Sciences, 111, 440–449.CrossRefGoogle Scholar
  46. Ramos-Martin, J., Cañella-Bolta, S., Giampietro, M., & Gamboa, G. (2009). Catalonia's energy metabolism: Using the MuSIASEM approach at different scales. Energy Policy 37, 4658–4671.CrossRefGoogle Scholar
  47. Schaeffer, R., et al. (2003). Energia e Pobreza: problemas de desenvolvimento energético e grupos sociais marginais em áreas rurais e urbanas no Brasil: Recursos Naturales e Infraestructura. Santiago de Chile: División de Recursos Naturales e Infraestructura, Comisión Económica para América Latina y el Caribe (CEPAL).Google Scholar
  48. Schaeffer, R., et al. (2008). Elaboração de Ferrameta Computacional para Estimar o Potencial de Conservação de Energia Elétrica em Comunidades de Baixo Poder Aquisitivo. Rio de Janeiro: Programa de Planejamento Energético, COPPE, Universidade Federal do Rio de Janeiro e Faculdade de Economia, Universidade Federal Fluminense—PPE/COPPE/UFRJ.Google Scholar
  49. Scheidel, A. (2013). Flows, funds and the complexity of deprivation: Using concepts from ecological economics for the study of poverty. Ecological Economics, 86, 28–36.CrossRefGoogle Scholar
  50. Scheidel, A., Giampietro, M., & Ramos-Martin, J. (2013). Self-sufficiency or surplus: Conflicting local and national rural development goals in Cambodia. Land Use Policy, 34, 342–352.CrossRefGoogle Scholar
  51. SEDE. (2010). Balanço Energético do Estado do Rio de Janeiro 2009. Rio de Janeiro: Secretaria de Desenvolvimento Econômico, Energia, Industria e Serviços.Google Scholar
  52. Serrano-Tovar, T., & Giampietro, M. (2014). Multi-scale integrated analysis of rural Laos: Studying metabolic patterns of land uses across different levels and scales. Land Use Policy, 36, 155–170.CrossRefGoogle Scholar
  53. Shrestha, R. M., Kumar, S., Martin, S., & Dhakal, A. (2008). Modern energy use by the urban poor in Thailand: A study of slum households in two cities. Energy for Sustainable Development, 12(4), 5–13.CrossRefGoogle Scholar
  54. SIMPLES Nacional. (2015). Ministério da Fazenda. www.receita.fazenda.gov.br/SimplesNacional/. Accessed Aug 2015.
  55. Sorman, A. H., & Giampietro, M. (2011). Generating better energy indicators: Addressing the existence of multiple scales and multiple dimensions. Ecological Modelling, 223, 41–53.CrossRefGoogle Scholar
  56. Souza, J. (2013). A Invisibilidade da luta de classes ou a cegueira do economicismo. In A “Nova Classe Média” no Brasil como Conceito e Projeto Político. Rio de Janeiro: Fundação Heinrich Böll.Google Scholar
  57. Takeuchia, A., Croppera, M., & Bento, A. (2008). Measuring the welfare effects of slum improvement programs: The case of Mumbai. Journal of Urban Economics, 64, 65–84.CrossRefGoogle Scholar
  58. UN-Habitat. (2003). The challenge of slums: Global report on human settlements 2003. Nairobi: United Nations Human Settlements Programme.Google Scholar
  59. World Bank. (2001). Attacking Brazil’s poverty—A poverty report with a focus on urban poverty reduction policies. World Bank Sector Report, v. 2, p. 123Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Raul F. C. Miranda
    • 1
  • Carolina Grottera
    • 1
  • Mario Giampietro
    • 2
    • 3
  1. 1.Programa de Planejamento EnergéticoCOPPE, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Institut de Ciència i Tecnologia AmbientalsUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations