Assessment of climate change awareness and agronomic practices in an agricultural region of Henan Province, China

Abstract

Agricultural production is a complex interaction between human and natural environment, making agriculture both significantly responsible and vulnerable to climate change. China, whose socioeconomy is fundamentally dependent on agriculture, is already experiencing climate-change-related issues that threaten food security and sustainable development. Climate change mitigation and adaptation are of great concern to ensure food security for the growing population and improve the livelihoods of poor smallholder producers. A questionnaire survey was conducted in Henan Province, China to assess agronomic practices of smallholder farmers, adaptation strategies and how climate change awareness and perceptions influence the farmers’ choice of agronomic practices. The results showed that the vast majority of farmers owned <10 Chinese Mu (0.7 ha) and nearly all farmers’ relied on intensive use of chemical fertilizers and pesticides to increase yield at the detriment of environment. However, farmers who were aware of climate change had adopted agronomic practices that reduce impacts of climate change. Information about climate change, lack of incentives, lack of credit facilities and small farm sizes were major hindrance to adaptation and adoption of farming practices that can reduce impacts of climate change. This study recommends that research findings should be disseminated to farmers in timely and appropriate ways. The central government should formulate policies to include subsidies and incentives for farmers to motivate adoption of eco-friendly agronomic practices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adger, W., Huq, S., Brown, K., Conway, D., & Hulme, M. (2003). Adaptation to climate change in the developing world. Progress in  Development Studies, 3, 179–195.

  2. Bernard, R. (2006). Research methods in anthropology: Qualitative and quantitative approaches (4th ed., p. 522). Oxford: AltaMira Press.

    Google Scholar 

  3. Bordens, K. S., & Abbott, B. B. (2008). Research design and methods: A process approach (7th ed.). New York: McGraw-Hill Companies.

    Google Scholar 

  4. Bruinsma, J. (2003). World agriculture: Towards 2015/2030. An FAO perspective. London: Earthscan Publications Ltd.

    Google Scholar 

  5. Bryan, E., Deressa, T. T., Gbetibouo, G. A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environmental Science & Policy, 12, 413–426.

    Article  Google Scholar 

  6. Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., & Herrero, M. (2013). Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of Environmental Management, 114, 26–35.

    Article  Google Scholar 

  7. Chambers, R., & Gordon, C. (1992). Sustainable rural livelihoods: Practical concepts for the 21st century. IDS Discussion Paper 296, IDS, Brighton, UK.

  8. Chen, Y., Wu, Z., Okamoto, K., Han, X., Ma, G., Chien, H., et al. (2013). The impacts of climate change on crops in China: A Ricardian analysis. Global and Planetary Change, 104, 61–74.

    Article  Google Scholar 

  9. Conway, D., & Schipper, E. L. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change, 21, 227–237.

    Article  Google Scholar 

  10. Dang, H., Li, E., Bruwer, J., Nuberg, I. (2013). Farmers’ perceptions of climate variability and barriers to adaptation: lessons learned from an exploratory study in Vietnam. Mitigation and Adaptation Strategies for Global Change. doi:10.1007/s11027-012-9447-6.

  11. Dercon, S. (2004). Growth and shocks: Evidence from rural Ethiopia. Journal of Development Economics, 74, 309–329.

    Article  Google Scholar 

  12. Dong, Y., Ishikawa, M., Liu, X., Hamori, S. (2011). The determinants of citizen complaints on environmental pollution: An empirical study from China. Journal of Cleaner Production, 19, 1306–1314.

  13. Ellis, F., & Biggs, S. (2001). Evolving themes in rural development 1950s–2000s. Development Policy Review, 19, 437–448.

    Article  Google Scholar 

  14. Erda, L., Wei, X., Hui, J., Yinlong, X., Yue, L., Liping, B., et al. (2005). Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society B: Biological Sciences., 360, 2149–2154.

    Article  Google Scholar 

  15. FAO. (2013). Statistical yearbook 2012 (Food and Agriculture Organization of the United Nations, 2012); go.nature.com/nfmwxx. Accessed 2013.

  16. Fischer, G., Shah, M., Tubiello, F. N., & van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2067–2083.

    Article  Google Scholar 

  17. Fischer, G., Shah, M., van Velthuizen, H., & Nachtergaele, F. O. (2001). Global agro-ecological assessment for agriculture in the 21st century. Laxenburg: International Institute for Applied Systems Analysis.

    Google Scholar 

  18. Frolking, S., Xiao, X., Zhuanh, Y., Salas, W., & Li, C. (1999). Agricultural land-use in China: A comparison of area estimates from ground-based census and satellite-borne remote sensing. Global Ecology and Biogeography, 8, 407–416.

    Article  Google Scholar 

  19. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., et al. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food Security, 2(3), 197–214.

  20. Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Is there a need for a more sustainable agriculture? Critical Reviews in Plant Sciences, 30, 6–23.

    Article  Google Scholar 

  21. Gregory, P. J., Ingram, J. S. I., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2139–2148.

    Article  CAS  Google Scholar 

  22. Hansen, J. W., Mason, S. J., Sun, L., & Tall, A. (2011). Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Experimental Agriculture, 47, 205–240.

    Article  Google Scholar 

  23. He, X.-F., Cao, H., & Li, F.-M. (2007). Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China. Agricultural Water Management, 89, 243–250.

    Article  Google Scholar 

  24. Hu, C., Delgado, J. A., Zhang, X., & Ma, L. (2005). Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian region and potential implications for water conservation in the northwestern North China Plain. Journal of Soil and Water Conservation, 60, 80–88.

    Google Scholar 

  25. International Food Policy Research Institute (IFPRI), (2002). Green revolution curse or blessing? Washington, DC, USA.

  26. IPCC. (2001). Africa. In: J. J. McCarthy, O. Canziani, N. A. Leary, D. J. Dokken, & K. S. White (Eds.), Climate change 2001: Impacts, adaptation and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, Chapter 10.

  27. IPCC. (2007). Climate change 2007: Synthesis report. Contributions of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.

  28. IPCC. (2014). Impacts, adaptation and vulnerability. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.

  29. Joseph, S. (Ed.). (2009). Socio-economic assessment and implementation of small-scale in biochar projects. London: Earthscan.

    Google Scholar 

  30. Kjellstrom, T., & Weaver, H. J. (2009). Climate change and health: Impacts, vulnerability, adaptation and mitigation. New South Wales Public Health Bulletin, 20, 5–9.

    Article  Google Scholar 

  31. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  32. Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., et al. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113–118.

    Article  Google Scholar 

  33. Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change, 11, 395–419.

    Article  Google Scholar 

  34. Li, C., Frolking, S., & Butterbach-Bahl, K. (2005). Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change, 72, 321–338.

    Article  CAS  Google Scholar 

  35. Li, Z. D., Li, M., Pan, G. X., Li, L. Q., Zheng, J. F., & Kibue, G. (2013). Challenges for crop straw return—A questionnaire survey on farmers’ vision from Shangqiu Municipality, Henan Province, China. Chinese Agricultural Science, 105, 21–32 (in Chinese).

  36. Lichtfouse, E., Navarrete, M., Debaeke, P., Souch’ere, V., Alberola, C., & Ménassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agronomy for Sustainable Development, 29, 1–6.

    Article  Google Scholar 

  37. Liu, J., & Diamond, J. (2005). China’s environment in a globalizing world. Nature, 435, 1179–1186.

    Article  CAS  Google Scholar 

  38. Liu, H., & Huang, Q. (2013). Adoption and continued use of contour cultivation in the highlands of southwest China. Ecological Economics, 91, 28–37.

    Article  Google Scholar 

  39. Lloyd-Evans, S. (2006). Focus groups. In V. Desai & R. B. Potter (Eds.), Doing development research. London: Sage Publication Ltd.

    Google Scholar 

  40. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607–610.

    Article  CAS  Google Scholar 

  41. Lozano-García, B., Parras-Alcántara, L., & del Toro Carrillo de Albornoz, M. (2011). Effects of oil mill wastes on surface soil properties, runoff and soil losses in traditional olive groves in southern Spain. Catena, 85, 187–193.

    Article  Google Scholar 

  42. Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139, 224–231.

    Article  CAS  Google Scholar 

  43. Mao, R. Z., Fitzpatrick, R. W., Liu, X. J., & Davies, P. J. (2002). Chemical properties of selected soils from the North China Plain. In T. R. McVicar, L. Rui, J. Walker, R. W. Fitzpatrick & L. Changming (Eds.), Regional water and soil assessment for managing sustainable agriculture in China and Australia (pp. 173–186). ACIAR Monograph No. 84.

  44. Marshall, M. N. (1996). Sampling for qualitative research. Family Practice, 13, 522–525.

    Article  CAS  Google Scholar 

  45. Marshall, N. A. (2010). Understanding social resilience to climate variability in primary enterprises and industries. Global Environmental Change, 20, 36–43.

    Article  Google Scholar 

  46. Marshall, N. A., Park, S., Howden, S. M., Dowd, A. B., & Jakku, E. S. (2013). Climate change awareness is associated with enhanced adaptive capacity. Agricultural Systems, 117, 30–34.

    Article  Google Scholar 

  47. Mayoux, L. (2006). Quantitative, qualitative or participatory? Which method, for what and when? In V. Desai & R. B. Potter (Eds.), Doing development research. London: Sage Publications Ltd.

    Google Scholar 

  48. Mertz, O., Mbow, C., Reenberg, A., & Diouf, A. (2009). Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environmental Management, 43, 804–816.

    Article  Google Scholar 

  49. Mishra, A. K., & Shibata, T. (2012). Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). Atmospheric Environment, 57, 205–218.

    Article  CAS  Google Scholar 

  50. Mosier, A. R., Duxbury, J. M., Freney, J. R., Heinemeyer, O., Minami, K., & Johnson, D. E. (1998). Mitigating agricultural emissions of methane. Climatic Change, 40, 39–80.

    Article  CAS  Google Scholar 

  51. Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43–51.

    Article  CAS  Google Scholar 

  52. Qiu, J. (2010). China drought highlights future climate threats. Nature, 465, 142–143.

    Article  CAS  Google Scholar 

  53. Ronald, P. (2011). Plant genetics, sustainable agriculture and global food security. Genetics, 188, 11–20.

    Article  Google Scholar 

  54. Roy, S. J., Tucker, E. J., & Tester, M. (2011). Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology, 14, 232–239.

    Article  CAS  Google Scholar 

  55. Rusinamhodzi, L., Corbeels, M., Nyamangara, J., & Giller, K. E. (2012). Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research, 136, 12–22.

    Article  Google Scholar 

  56. Shi, H., Peng, S. Z., Liu, Y., & Zhong, P. (2008). Barriers to the implementation of cleaner production in Chinese SMEs: Government, industry and expert stakeholders’ perspectives. Journal of Cleaner Production, 16, 842–852.

    Article  Google Scholar 

  57. Silverman, D. (2004). Qualitative research-theory, method and practice (2nd ed.). London: Sage Publishers.

    Google Scholar 

  58. Simon, D. (2006). Your questions answered? In V. Desai & R. B. Potter (Eds.), Conducting questionnaire surveys in doing development research. London: Sage Publication Ltd.

    Google Scholar 

  59. Smil, V. (1993). China’s environmental crisis. New York: M.E. Sharp.

    Google Scholar 

  60. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 789–813.

    Article  CAS  Google Scholar 

  61. Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, 148, 543–552.

    Article  CAS  Google Scholar 

  62. Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133, 247–266.

    Article  CAS  Google Scholar 

  63. Song, G., Li, L., Pan, G., & Zhang, Q. (2005). Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry, 74, 47–62.

    Article  CAS  Google Scholar 

  64. Stern, N. (2006). Review on the economics of climate change. London: HM Treasury.

    Google Scholar 

  65. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.

    Article  CAS  Google Scholar 

  66. Thorburn, P. J., Biggs, J. S., Weier, K. L., & Keating, B. A. (2003). Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems & Environment, 94, 49–58.

    Article  CAS  Google Scholar 

  67. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.

    Article  CAS  Google Scholar 

  68. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  CAS  Google Scholar 

  69. Tirado, R., Gopikrishna, S. R., Krishnan, R., & Smith, P. (2010). Greenhouse gas emissions and mitigation potential from fertilizer manufacture and application in India. International Journal of Agricultural Sustainability, 8, 176–185.

    Article  Google Scholar 

  70. Tong, C., Hall, C. A. S., & Wang, H. (2003). Land use change in rice, wheat and maize production in China (1961–1998). Agriculture, Ecosystems & Environment, 95, 523–536.

    Article  Google Scholar 

  71. UNEP. (2010). The African Ministerial Conference on the Environment (AMCEN). In United Nations Environment Programme (UNEP), UNEP.

  72. Wang, J., Huang, J., Rozelle, S., Huang, Q., & Blanke, A. (2007). Agricultural and groundwater development in Northern China: Trends, institutional response and policy options. Water Policy, 9, 61–74.

    Article  CAS  Google Scholar 

  73. Wang, J., Mendelsohn, R., Dinar, A., & Huang, J. (2010). How Chinese farmers change crop choice to adapt to climate change. Climate Change Economics, 01, 167.

    Article  Google Scholar 

  74. Wang, J., Mendelsohn, R., Dinar, A., Huang, J., Rozelle, S., & Zhang, L. (2009). The impact of climate change on China’s agriculture. Agricultural Economics, 40, 323–337.

    Article  Google Scholar 

  75. World Bank. (2009). Development and climate change. World Bank Publications.

  76. Worthington, S., Thompson, F. M., & Stewart, D. B. (2011). Credit cards in a Chinese cultural context—The young, affluent Chinese as early adopters. Journal of Retailing and Consumer Services, 18, 534–541.

    Article  Google Scholar 

  77. Xu, S., Shi, X., Zhao, Y., Yu, D., Li, C., Wang, S., et al. (2011). Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050. Geoderma, 166, 206–213.

    Article  CAS  Google Scholar 

  78. Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., et al. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research, 127, 153–160.

    Article  Google Scholar 

  79. Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., et al. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139, 469–475.

    Article  CAS  Google Scholar 

  80. Zhen, L., Zoebisch, M. A., Chen, G., & Feng, Z. (2006). Sustainability of farmers’ soil fertility management practices: A case study in the North China Plain. Journal of Environmental Management, 79, 409–419.

    Article  CAS  Google Scholar 

  81. Zong, Y. Q., & Chen, X. Q. (2000). The 1998 flood on the Yangtze, China. Natural Hazards, 22, 165–184.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by Ministry of Agriculture, China granted in 2012. The authors are grateful to the farmers and households in Xieji Township, Henan, for their cooperation and assistance offered during the social survey interviews and discussions. The authors are also grateful to Ming Yan from department of Soil Science, Nanjing Agricultural University for questionnaire design and research assistance provided. The authors sincerely thank the anonymous reviewers, whose insights have improved this paper tremendously.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grace Wanjiru Kibue.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kibue, G.W., Pan, G., Zheng, J. et al. Assessment of climate change awareness and agronomic practices in an agricultural region of Henan Province, China. Environ Dev Sustain 17, 379–391 (2015). https://doi.org/10.1007/s10668-014-9546-5

Download citation

Keywords

  • Agronomic practices
  • Climate change awareness
  • China
  • Smallholder farmers
  • Sustainable livelihoods