Advertisement

Environment, Development and Sustainability

, Volume 16, Issue 6, pp 1317–1336 | Cite as

Integrated hydrologic–economic decision support system for groundwater use confronting climate change uncertainties in the Tunuyán River basin, Argentina

  • Flavia Tromboni
  • Lucia Bortolini
  • José Antonio Morábito
CASE STUDY
  • 322 Downloads

Abstract

This study presents an integrated hydrologic–economic model as decision support system for groundwater use and incorporates uncertainties of climate change. The model was developed with the Vensim software (Ventana Systems) for system dynamic simulations. The software permitted the integration of economic variables along with hydrologic variables, in a unified format with the aim of evaluating the economic impacts of climate change on arid environments. To test the model, we applied it in one of the upper Tunuyán River sub-basin, located in the Mendoza Province (Argentina), where irrigation comes from groundwater. The model defines the best mix of crops and the total land use required to maximize the total river sub-basin monetary income, considering as a limit the amount of water that does not exceed the natural annual aquifer recharge. To estimate the impacts of climatic changes, four scenarios were compared: the business as usual (with the number of existing wells) in a dry year with a temperature increase of 4 °C; the business as usual in a wet year with an increase in temperature of 1.1 °C; an efficient use of wells in a dry year and a temperature increase of 4 °C and an efficient use of wells in a wet year with a temperature increase of 1.1 °C. Outputs calculated by the model were: land use per crop, total sub-basin net benefit, total sub-basin water extraction, water extraction limit depending on river discharge and total number of wells required to irrigate the entire area. Preliminary results showed that the number of existing wells exceeded the optimized number of wells required to sustainably irrigate the entire river sub-basin. Results indicated that in an average river discharge year, if wells were efficiently used, further rural development would be possible, until the limit of 350 million m3 of water extraction per year was reached (650 million m3 for a wet year and 180 million m3 for a dry year). The unified format and the low cost of the software license make the model a useful tool for Water Resources Management Institutions, particularly in developing countries.

Keywords

Sustainable water management Mathematical simulation model Aquifer recharge Groundwater irrigation 

Notes

Acknowledgments

We would like to express our gratitude to Prof. Pablo Canziani (Universidad Católica de Buenos Aires), Prof. Pablo Romanazzi (Universidad de La Plata), and Prof. Alejandro Gennari (Universidad de Cuyo), for the technical help and for all the data provided during this research.

References

  1. Ahrends, H., Mast, M., Rodgers, C., & Kunstmann, H. (2008). Coupled hydrological–economic modelling for optimised irrigated cultivation in a semi-arid catchment of West Africa. Environmental Modelling & Software, 23(4), 385–395. doi: 10.1016/j.envsoft.2007.08.002.
  2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements FAO Irrigation and Drainage 56 Rome, Italy.Google Scholar
  3. Bates, B., Kundzewicz, Z.W., Wu, S., & Palutikof, J. P. (2008). Climate change and water. Technical paper VI vol Technical paper VI Intergovernmental Panel on Climate Change Secretariat, Geneva.Google Scholar
  4. Booker, J. F. (1995). Hydrologic and economic impacts of drought under alternative policy responses. Water Resources Bulletin, 31(5), 889–906.CrossRefGoogle Scholar
  5. Cai, X. (2008). Implementation of holistic water resources-economic optimization models for river basin management e reflective experiences. Environmental Modelling and Software, 23, 2–18.CrossRefGoogle Scholar
  6. Cai, X., McKinney, D. C., & Lasdon, L. S. (2003). Integrated hydrologic-agronomic-economic model for river basin management. Journal of Water Resources Planning and Management, 129: 4/17.Google Scholar
  7. Cavana, R.Y., & Ford, A. (2004). Environmental and resources systems, editor's introduction. System Dynamics Review 20(2), 89–98. Google Scholar
  8. Diaz, G. E., & Brown, T. C. (1997). Aquarius: an object-oriented model for efficient allocation of water in river basins. Paper presented at the Symposium Water Resources Education, training and Practice, opportunities for the Next Century, Keystone.Google Scholar
  9. Draper, A. J., Jenkins, M. W., Kirby, K. W., Lund, J. R., & Howitt, R. E. (2003). Economic-engineering optimization for California Water Management. Journal of Water Resources Planning and Management, 129, 155–164.CrossRefGoogle Scholar
  10. Gisser, M., & Mercado, A. (1972). Integration of the agricultural demand function for water and the hydrological model of the Pecos Basin. Water Resources Research, 8(6), 1373–1384.CrossRefGoogle Scholar
  11. Grossmann, M., & Dietrich, O. (2012). Integrated economic-hydrologic assessment of water management options for regulated wetlands under conditions of climate change: A case study from the Spreewald (Germany). Water Resources Management, 26(7), 2081–2108. doi: 10.1007/s11269-012-0005-5.CrossRefGoogle Scholar
  12. Grundmann, J., Schütze, N., Schmitz, G., & Al-Shaqsi, S. (2012). Towards an integrated arid zone water management using simulation-based optimisation. Environmental Earth Sciences, 65(5), 1381–1394. doi: 10.1007/s12665-011-1253-z.CrossRefGoogle Scholar
  13. Heinz, I., Pulido Velazquez, M., Lund, J. R., & Andreu, J. (2007). Hydro-economic modelling in river basin management: Implications and applications for the European water framework directive. Water Resources Management, 21, 1103–1125.CrossRefGoogle Scholar
  14. Hernández, J. (1998). Aspectos hidrológicos del Valle de Uco. Provincia de Mendoza. Vol. DI 261. San Juan. Google Scholar
  15. Hernández, J., & Martinis, N. (2001). Modernización del manejo de los recursos hídricos—Agua Subterránea. INA, Mendoza: Cuenca de los ríos Diamante y Atuel. Mendoza.Google Scholar
  16. Intergovernmental Panel on Climate Change. (2007). Intergovernmental Panel on Climate Change 2007. Valencia, Spain: Synthesis Report.CrossRefGoogle Scholar
  17. Jenkins, M. W., Lund, J. R., Howitt, R. E., Draper, A. J., Hsangi, S. M., Tanaka, S. K., et al. (2004). Optimization of California’s water supply system: results and insights. Journal of Water Resources Planning and Management, 130(4), 271–280.CrossRefGoogle Scholar
  18. Khan, S., O’Connel, N., Rana, T., & Xevi, E. (2008). Hydrologic-economic model for managing irrigation intensity in irrigation areas under watertable and soil salinity targets. Environmental Modeling and Assessment, 13(1), 115–120. doi: 10.1007/s10666-006-9081-3.CrossRefGoogle Scholar
  19. Lefkoff, L. J., & Gorelick, S. M. (1990). Simulating physical processes and economic behaviour in saline irrigated agriculture-model development. Water Resources Research, 26(7), 1359–1369.CrossRefGoogle Scholar
  20. Lund, J. R., Cai, X., & Characklis, G. W. (2006). Economic engineering of environmental and water resource systems. Journal of Water Resources Planning and Management, 132(6), 399–402.CrossRefGoogle Scholar
  21. Mainuddin, M., Kirby, M., & Qureshi, M. E. (2007). Integrated hydrologic-economic modelling for analyzing water acquisition strategies in the Murray River Basin. Agricultural Water Management, 93(3), 123–135. doi: 10.1016/j.agwat.2007.06.011.
  22. Mc Kinney, D. C., Cai, X., Rosergrant, M. W., Ringler, C., & Scott, C. A. (1999). Modelling water resources management at the basin level: Review and future directions. System-wide initiative on water management papers, Vol. 6. International Water Management Institute, Colombo, Sri Lanka.Google Scholar
  23. Menenti, M., Chambouleyron, J., Morabito, J., & Fornero, L. (1992a). Appraisal and optimization of agricultural water use in large irrigation schemes: I. Applications. Water Resources Management, 6, 201–221.CrossRefGoogle Scholar
  24. Menenti, M., Chambouleyron, J., Morabito, J., & Fornero, L. (1992b). Appraisal and optimization of agricultural water use in large irrigation schemes: I. Theory. Water Resources Management, 6, 185–199.CrossRefGoogle Scholar
  25. Morabito, J. A., Bustos, R. M., & Salatino, S. E. (2005). Participación de los regantes en la administración del agua en la tercera zona de riego del río Mendoza (Argentina). Análisis según nivel educativo y tamaño de la propiedad. Papers INA Mendoza, ArgentinaGoogle Scholar
  26. Morabito, J. A., Hernandez, R., Salatino, S. E., & Mirabile, C. M. (2009). Calculo de las necesidades de riego de los principales cultivos del oasi Sur. Mendoza, Argentina. Papers INA, Mendoza, Argentina.Google Scholar
  27. Newlin, B. D., Jenkins, M. W., Lund, T. R., & Howitt, R. E. A. (2002). Southern California water markets: Potential and limitations. Journal of Water Resources Planning and Management, 128(1), 21–32.CrossRefGoogle Scholar
  28. Querner, E. P., Morabito, J. A., & Tozzi, D. (2008). SIMGRO, a GIS-supported regional hydrological model in irrigated areas: Case study in Mendoza, Argentina. Journal of Irrigation and Drainage Engineering, ASCE 44.Google Scholar
  29. Rodgers, C., & Zaafrano, R. (2003). A water resources management policy simulation model of the Brantas Basin, East Java, Indonesia. Paper presented at the Paper prepared for the Panel on Water Policy and Agricultural Production at the Global and River Basin levels, Durban, South Africa., August 16–23.Google Scholar
  30. Rosegrant, M. W., Ringler, C., McKinney, D. C., Cai, X., Keller, A., & Donoso, G. (2000). Integrated economic-hydrologic water modelling at the basin scale: Maipo river basin. Agricultural Economics, 24, 33–46.Google Scholar
  31. Silva-Hidalgo, H., Martin-Dominguez, I. R., Alarcon-Herrera, M. T., & Granados-Olivas, A. (2008). Mathematical modelling for the integrated management of water resources in hydrological basins. Water Resources Management, 23, 721–730.CrossRefGoogle Scholar
  32. Sterman, J. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA: Irwin McGraw-Hill.Google Scholar
  33. Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y. et al. (2012). Ground water and climate change. Nature Climate Change. Advance online publication.Google Scholar
  34. Vensim. (2010). User’s guide-Vensim introduction and tutorials-Ventana System.Google Scholar
  35. Ventana Systems I. (1998).Vensim PLE software version 3.0. Ventana Systems, Inc., 60. Jacob Gates Road, Harvard, Massachusetts.Google Scholar
  36. Vich, A. I. J., Lopez, P. M., & Schumacher, M. C. (2007). Trend detection in the water regime of the main rivers of the Province of Mendoza, Argentina. GeoJournal, 70, 233–243.CrossRefGoogle Scholar
  37. Ward, F. A., & Lynch, T. P. (1996). Integrated river basin optimization modeling economic and hydrologic interdependence. Water Resources Bulletin, 32(6), 1127–1138.CrossRefGoogle Scholar
  38. Ward, F. A., & Pulido-Velázquez, M. (2008). Efficiency, equity, and sustainability in a water quantity-quality optimization model in the Rio Grande basin. Ecological Economics, 66(1), 23–37.CrossRefGoogle Scholar
  39. Winz, I., Brierley, G., & Trowsdale, S. (2009). The use of system dynamics simulation in water resources management. Water Resources Management, 23, 1301–1323.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Flavia Tromboni
    • 1
    • 2
  • Lucia Bortolini
    • 1
  • José Antonio Morábito
    • 3
  1. 1.Dipartimento di Territorio e Sistemi Agro-Forestali (TESAF)Università Degli Studi di PadovaPadovaItaly
  2. 2.Departamento de Ecologia (IBRAG), Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto Nacional del Agua, Mendoza- Argentina & FCA-UNCuyoMendozaArgentina

Personalised recommendations