Skip to main content
Log in

Radioactive Contamination Control by Atmospheric Dispersion Assessment of Airborne Indicator Contaminants: Numerical Model Validation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this work, a numerical model is proposed to estimate air concentration of released airborne radioactive contaminants 131I and 137Cs. A Gaussian dispersion model is used to assess the atmospheric dispersion of radioactive contaminants released continuously from a nuclear power plant as a result of an accident. The model uses various input parameters such as source height, release rate, stability class, wind speed, and wind direction. The validation of the model was carried out by comparing its predicted values with published experimental data. The model was extensively tested by simulating several accidental situations. The main conclusion drawn from these tests is that for large downwind distances from the release point, the contaminant concentrations predicted by the model diverge drastically from measured data, while for short distances, the predicted values generally agree quite well with experimental data. The obtained activity concentrations range from 1.57 × 102 to 6.43 × 103 Bq/m3 for 131I and from 3.18 × 10−2 to 9.72 × 102 Bq/m3 for 137Cs. The estimated standard deviation coefficients values range of 7.2 to 6847.7 m, and the maximum absolute error predicted by the model for these parameters was less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics Journal, 5(9), 2461–2474. https://doi.org/10.5194/acp-5-2461-2005.

    Article  CAS  Google Scholar 

  2. Rolph, G. D., Ngan, F., & Draxler, R. R. (2014). Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model. Journal of Environmental Radioactivity, 136, 41–55. https://doi.org/10.1016/j.jenvrad.2014.05.006.

    Article  CAS  Google Scholar 

  3. Quélo, D., Krysta, M., Bocquet, M., Isnard, O., Minier, Y., & Sportisse, B. (2007). Validation of the Polyphemus platform on the ETEX, Chernobyl and Algeciras cases. Atmospheric Environment Journal, 41(26), 5300–5315. https://doi.org/10.1016/j.atmosenv.2007.02.035.

    Article  CAS  Google Scholar 

  4. Persson, C., Langner, J., & Robertson, L. (1996). Air pollution assessment studies for Sweden based on the MATCH model and air pollution measurements. In S. E. Gryning & F. A. Schiermeier (Eds.), Air pollution modeling and its application XI, NATO · Challenges of Modern Society (Vol. 21, pp. 9–18). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-5841-5_15.

    Chapter  Google Scholar 

  5. Jones, A., Thomson, D., Hort, M., & Devinish, B. (2007). The UK Met Met Office’s next-generation atmospheric dispersion model, NAME III. In C. Borrego & A.-L. Norman (Eds.), Air pollution modeling and its application XVII (pp. 580–589). New York: Springer.

    Google Scholar 

  6. Hass, H., Jakobs, H. J., & Memmesheimer, M. (1995). Analysis of a regional model (EURAD) near surface gas concentration predictions using observations from networks. Meteorology and Atmospheric Physics, 57(1–4), 173–200. https://doi.org/10.1007/BF01044160.

    Article  Google Scholar 

  7. Elbern, H., Strunk, A., Schmidt, H., & Talagrand, O. (2007). Emission rate and chemical state estimation by 4-dimensional variational inversion. Journal of Atmospheric Chemistry and Physics, 7(14), 3749–3769. https://doi.org/10.5194/acp-7-3749-2007.

    Article  CAS  Google Scholar 

  8. Brandt, J., Christensen, J. H., & Frohn, L. M. (2002). Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, 2(5), 397–417. https://doi.org/10.5194/acp-2-397-2002.

    Article  CAS  Google Scholar 

  9. NEA.OECD Nuclear Energy Agency. (2013). The Fukushima Daiichi Nuclear Power Plant accident: OECD/NEA Nuclear safety response and lessons learnt. Report N° 7161. https://www.oecd-nea.org/pub/2013/7161-fukushima 2013.pdf.

  10. Morino, Y., Ohara, T., & Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi Nuclear Power Plant in March 2011. Geophysical Research Letters, 38(7), L00G11. https://doi.org/10.1029/2011GL048689.

    Article  CAS  Google Scholar 

  11. NISA. Nuclear and Industrial Safety Agency. (2011). Nuclear emergency response headquarters government of Japan. Report of Japanese Government to the IAEA, Ministerial Conference on Nuclear Safety, -The Accident at TEPCO’s Fukushima Nuclear Power Stations-.

  12. IAEA. International Atomic Energy Agency. (2015). The Fukushima Daiichi accident: report by the Director General. STI/PUB/1710. ISBN:987–92–0-107015-9.

  13. Terumi, D., Yoshihito, O., Hiroyuki, K., Kenso, F., Yoshiaki, S., & Kazuki, I. (2015). Radioceasium activity concentrations in parmelioid lichens within a 60 km radius of the Fukushima Dai-ichi Nuclear Power Plant. Journal of Environmental Radioactivity, 146, 125–133. https://doi.org/10.1016/j.jenvrad.2015.04.013.

    Article  CAS  Google Scholar 

  14. Chino, M., Akayama, H., Nagai, H., Terada, H., Katata, G., & Yamazawa, H. (2011). Preliminary estimation of release amounts of 131I and 137Cs, accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. Journal of Nuclear Science and Technology, 48(7), 1129–1134. https://doi.org/10.1080/18811248.2011.9711799.

    Article  CAS  Google Scholar 

  15. Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., & Awaji, T. (2011). Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi Nuclear Power Plant disaster. Journal of Nuclear Science and Technology, 48(11), 1349–1356. https://doi.org/10.1080/18811248.2011.9711826.

    Article  CAS  Google Scholar 

  16. Katata, G., Ota, M., Terada, H., Chino, M., & Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident. Journal of Environmental Radioactivity, 109, 103–113. https://doi.org/10.1016/j.jenvrad.2012.02.006.

    Article  CAS  Google Scholar 

  17. Katata, G., Terada, H., Nagai, H., & Chino, M. (2012). Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 111, 2–12. https://doi.org/10.5194/acp-12-2313.

    Article  CAS  Google Scholar 

  18. Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., & Yasunari, T. J. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant: determination of the source term, atmospheric dispersion, and deposition. Journal of. Atmospheric Chemistry and Physics, 12(5), 2313–2343. https://doi.org/10.5194/acp-12-2313-2012.

    Article  CAS  Google Scholar 

  19. Schöppner, M., Plastino, W., Povinec, P. P., Wotawa, G., Bella, F., Budano, A., & Ruggieri, F. (2012). Estimation of the time-dependent radioactive source-term from the Fukushima Nuclear Power Plant accident using atmospheric transport modelling. Journal of Environmental Radioactivity, 114, 10–14. https://doi.org/10.1016/j.jenvrad.2011.11.008.

    Article  CAS  Google Scholar 

  20. TEPCO.Tokyo Electric Power Company. (2012). Estimation of radioactive material released to the atmosphere during the Fukushima Daiichi Nuclear Power Station accident, Press Release. http://www.tepco.co.jp/en/press/corp-com/release/betu12e/images/120524e0205.pdf.

  21. NISA. Nuclear and Industrial Safety Agency. (2011). Regarding the evaluation of the conditions on reactor cores of unit 1, 2 and 3 related to the accident at Fukushima Daiichi Nuclear Power Station. http://www.nsr.go.jp/archive/nisa/english/press/2011/06/en20110615–5.pdf.

  22. IRSN. Institute for Radiological Protection and Nuclear Safety. (2012). Fukushima, one year later: initial analysis of the accident and its consequences, Report IRSN/DG/2012–003 of March 2012.

  23. Furuta, S., Sumiya, S., Watanabe, H., Nakano, M., Imaizumi, K., & Takeyasu. (2011). Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi Nuclear Power Plant. Interim report. Ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout. JAEA- Review, (August). http://inis.iaea.org/Search/search.aspx?orig_q=RN:43088311.

  24. JAEA. Japan Atomic Energy Agency. (2011). Transition of radiation rates measured at environmental monitoring posts of the sites of JAEA. http://www.jaea.go.jp/english/jishin/e-monitor.pdf (accessed 18.11.11).

  25. Ohkura, T., Oishi, T., Taki, M., Shibanuma, Y., Kikuchi, M., Akino, H., Sawahata, T. (2012). Emergency monitoring of environmental radiation and atmospheric radionuclides at Nuclear Science Research Institute, following the accident of Fukushima Daiichi Nuclear Power Plant. Jaea, (May).

  26. DOE. (2011). Aerial measuring system in the United States, Radiation monitoring data from Fukushima area 03/25/2011.http://www.slideshare.net/energy/radiation-monitoring-data-from-fukushima-area-03252011(accessed 21.07.11).

  27. Pavel, P. P., Katsumi, H., & Michio, A. (2013). Fukushima accident: radioactivity impact on the environment. Chapter 4: Radionuclide releases into the environment (1st ed.pp. 103–130). Amsterdam: Elsevier ISBN: 9780124081321.

    Google Scholar 

  28. TEPCO. Tokyo Electric Power Company. (2011). Additional monitoring data at Fukushima Daiichi Nuclear Power Station. http://www.tepco.co.jp/en/press/corp-com/release/11052811-e.html (accessed 18.11.11.).

  29. Government of Japan. (2011). Nuclear Emergency Response Headquarters, Additional Report of the Japanese Government to the AIEA - The accident at TEPCO'S Fukushima Nuclear Power Stations -, Second report, Tokyo. http://www.meti.go.jp/english/earthquake/nuclear/iaea/aiea.

  30. Korsakissok, I., Mathieu, A., & Didier, D. (2013). Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study. Atmospheric Environment Journal, 70, 267–279. https://doi.org/10.1016/j.atmosenv.2013.01.002.

    Article  CAS  Google Scholar 

  31. USNRC-RG-1.145. (1982). Atmospheric dispersion models for potential accident consequence assessment at nuclear power plants. Tech. report USNRC-Regulatory Guide-1.145, Rev.1, U.S. Nuclear Regulatory Commission. http://www.nrc.gov/docs/ML0037/ML003740205.pdf.

  32. Bander, T. (1982). NUREG/CR-2858: PAVAN: an Atmospheric-Dispersion Program for Evaluating Design-Basis Accident releases of Radioactive Materials from Nuclear Power stations, prepared by Pacific Northwest Laboratory, Operated by Battelle Memorial Institute, U.S. Nuclear Regulatory Commission. http://www.nrc.gov/docs/ML1204/ML12045A149.pdf.

  33. Oza, R. B., Indumati, S. P., Puranik, V. D., Sharma, D. N., & Ghosh, A. K. (2013). Simplified approach for reconstructing the atmospheric source term for Fukushima Daiichi Nuclear Power Plant accident using scanty meteorological data. Annals of Nuclear Energy, 58, 95–101. https://doi.org/10.1016/j.anucene.2013.03.016.

    Article  CAS  Google Scholar 

  34. Leelossy, Á., Mészáros, R., & Lagzi, I. (2011). Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima nuclear power plant. Journal of Environmental Radioactivity, 102(12), 1117–1121. https://doi.org/10.1016/j.jenvrad.2011.07.010.

    Article  CAS  Google Scholar 

  35. Pasquill, F. (1971). Atmospheric dispersion of pollution. Quarterly Journal of the Royal Meteorological Society., 97(414), 369–395. https://doi.org/10.1002/qj.49709741402.

    Article  Google Scholar 

  36. Khaled, S. M. E., Fawzia, M., & Sanaa, A. K. (2005). Comparison of some sigma schemes for estimation of air pollutatnt dispersion in moderate and low winds. Atmospheric Science Letters, 6(2), 90–96. https://doi.org/10.1002/asl.94.

    Article  Google Scholar 

  37. Irwin, J. S. (1979). A theoretical variation of the wind profile power law exponent as a function of surface roughness and stability. Atmospheric Environment, 13(1), 191–194. https://doi.org/10.1016/0004-6981(79)90260-9.

    Article  Google Scholar 

  38. Martin, D. O. (2012). The change of concentration standard deviations with distance. Journal of the Air Pollution Control Association, Taylor & Francis Publisher, 26(2), 145–147. https://doi.org/10.1080/00022470.1976.10470238.

    Article  Google Scholar 

  39. Turner, D. B. (1994). Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling. Lewis Publishers, Boca Raton, Fla., (Ed.).

  40. Professor Allen and Durrenberger, Gaussian Plume Modeling, Chemical Engineering, 357, pdf.

  41. IAEA. International Atomic Energy Agency. (2011). AIEA Update on Fukushima nuclear accident. Fukushima Nuclear Accident Update Log, accessed April 12, 2011, 4:45. http://iaea.org/newscenter/news/tsunamiupdate01. html.

  42. IAEA. International Atomic Energy Agency. (2015). The Fukushima Daiichi accident, technical volume 4, radiological consequences, scientific and technical publications. https://www-pub.iaea.org/books/IAEABooks/10962/The-Fukushima-Daiichi-Accident.

  43. Stoehlker, U., Nikkinen, M., & Gheddou, A. (2011). Detection of radionuclides emitted during the Fukushima nuclear accident with the CTBT radionuclide network. In proceeding of the Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Tucson, AZ, USA (pp. 715–724).

  44. Christoudias, T., & Lelieveld, J. (2013). Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmospheric Chemistry and Physics Journal, 13(3), 1425–1438. https://doi.org/10.5194/acp-13-1425-2013.

    Article  CAS  Google Scholar 

  45. TEPCO. Tokyo Electric Power Company. (2011). Radiation dose measured in the Fukushima Daiichi Nuclear Power Station. http://www.tepco.co.jp/en/nu/fukushima-np/f2/index-e.html (accessed 18.11.11.).

Download references

Acknowledgments

This work was carried out as part of an internal project in Birine Nuclear Research Center (CRNB) and was supported by funding from the Algerian Atomic Energy Commission (COMENA). Authors thank the Laboratory of Aeronautics Science of Blida University that hosted and provided all the help to get this work underway. Authors express also their gratitude to Pr. Khelifa Abdellah from Blida University, Mr. Aguedal Hakim from Mostaganem University, Algeria, Dr. Ezzeddine F. Hutli from Budapest University of Technology and Economics, and Ms. Csilla Rudas from Centre for Energy Research Hungarian Academy of Science, Hungary, for their useful comments and suggestions to the manuscript of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Dahia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahia, A., Merrouche, D. & Rezoug, T. Radioactive Contamination Control by Atmospheric Dispersion Assessment of Airborne Indicator Contaminants: Numerical Model Validation. Environ Model Assess 23, 401–414 (2018). https://doi.org/10.1007/s10666-018-9598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-018-9598-2

Keywords

Navigation