Environmental Modeling & Assessment

, Volume 21, Issue 1, pp 125–148 | Cite as

Modelling Primary Producer Interaction and Composition: an Example of a UK Lowland River



Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory-based studies.


Stream ecosystem processes Ecological interaction Seasonal control Process-based model 



The authors are grateful to the Queen Mary University of London (C. M. Heppell, I. Sanders and S. Roberts), the UK Environment Agency, the Centre for Ecology and Hydrology, the EDINA Digimap and the British Atmospheric Data Centre for kindly providing their data series and digital maps for this research. The authors also thank the two anonymous reviewers and the editor for their constructive comments.


  1. 1.
    Mainstone, C. P., & Parr, W. (2002). Phosphorus in rivers—ecology and management. Science of the Total Environment, 282–283, 25–47.CrossRefGoogle Scholar
  2. 2.
    Neal, C., Martin, E., Neal, M., Hallett, J., Wickham, H. D., Harman, S. A., et al. (2010). Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Science of the Total Environment, 408(22), 5306–5316.CrossRefGoogle Scholar
  3. 3.
    Jarvie, H. P., Neal, C., & Withers, P. J. A. (2006). Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Science of the Total Environment, 360(1–3), 246–253.CrossRefGoogle Scholar
  4. 4.
    Neal, C., Jarvie, H. P., Withers, P. J. A., Whitton, B. A., & Neal, M. (2010). The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Science of the Total Environment, 408(7), 1485–1500.CrossRefGoogle Scholar
  5. 5.
    Edwards, A. C., & Withers, P. J. A. (2007). Linking phosphorus sources to impacts in different types of water body. Soil Use and Management, 23, 133–143. doi: 10.1111/j.1475-2743.2007.00110.x.CrossRefGoogle Scholar
  6. 6.
    Bowes, M. J., Gozzard, E., Johnson, A. C., Scarlett, P. M., Roberts, C., Read, D. S., et al. (2012). Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Science of the Total Environment, 426, 45–55. doi: 10.1016/j.scitotenv.2012.02.056.CrossRefGoogle Scholar
  7. 7.
    Dodds, W. K., & Whiles, M. (2010). Freshwater ecology. Concepts and environmental applications of limnology. 2nd Edition: Elsevier.Google Scholar
  8. 8.
    Kalff, J. (2001). Limnology inland water. 2nd Edition: Addison-Wesley.Google Scholar
  9. 9.
    Asaeda, T., Trung, V. K., Manatunge, J., & Van Bon, T. (2001). Modelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts. Ecological Engineering, 16(3), 341–357.CrossRefGoogle Scholar
  10. 10.
    Duarte, C., & Roff, D. (1991). Architectural and life history constraints to submersed macrophyte community structure: a simulation study. Aquatic Botany, 42(1), 15–29.CrossRefGoogle Scholar
  11. 11.
    Jones, F. H. (1984). The dynamics of suspended algal populations in the lower Wye catchment. Water Research, 18(1), 25–35.CrossRefGoogle Scholar
  12. 12.
    McKee, D., Hatton, K., Eaton, J. W., Atkinson, D., Atherton, A., Harvey, I., et al. (2002). Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany, 74(1), 71–83.CrossRefGoogle Scholar
  13. 13.
    Mooij, W., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, P., Chitamwebwa, D., et al. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology, 44(3), 633–667. doi: 10.1007/s10452-010-9339-3.CrossRefGoogle Scholar
  14. 14.
    OECD (1982). Eutrophication of waters: monitoring, assessment and control. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control) (pp. 154 p). Paris: Environment Directorate, Organisation for Economic Cooperation and Development (OECD).Google Scholar
  15. 15.
    Reynolds, C. S., Irish, A. E., & Elliott, J. A. (2001). The ecological basis for simulating phytoplankton responses to environmental change (PROTECH). Ecological Modelling, 140, 271–291.CrossRefGoogle Scholar
  16. 16.
    Hilton, J., O’Hare, M., Bowes, M. J., & Jones, J. I. (2006). How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment, 365(1–3), 66–83.CrossRefGoogle Scholar
  17. 17.
    Ibanez, C., Alcaraz, C., Caiola, N., Rovira, A., Trobajo, R., Alonso, M., et al. (2012). Regime shift from phytoplankton to macrophyte dominance in a large river: top-down versus bottom-up effects. Science of the Total Environment, 416, 314–322.CrossRefGoogle Scholar
  18. 18.
    Marques, J. C., Nielsen, S. N., Pardal, M. A., & Jørgensen, S. E. (2003). Impact of eutrophication and river management within a framework of ecosystem theories. Ecological Modelling, 166(1–2), 147–168. doi: 10.1016/s0304-3800(03)00134-0.CrossRefGoogle Scholar
  19. 19.
    Ham, S. F., Wright, J. F., & Berrie, A. D. (1981). Growth and recession of aquatic macrophytes on an unshaded section of the River Lambourn, England, from 1971 to 1976. Freshwater Biology, 11, 381–390.CrossRefGoogle Scholar
  20. 20.
    Jarvie, H. P., Neal, C., & Williams, R. J. (2004). Assessing changes in phosphorus concentrations in relation to in-stream plant ecology in lowland permeable catchments: bringing ecosystem functioning into water quality monitoring. Water, Air, & Soil Pollution: Focus, 4(2), 641–655.CrossRefGoogle Scholar
  21. 21.
    Rosset, V., Lehmann, A., & Oertli, B. (2010). Warmer and richer? Predicting the impact of climate warming on species richness in small temperate waterbodies. Global Change Biology, 16(8), 2376–2387. doi: 10.1111/j.1365-2486.2010.02206.x.CrossRefGoogle Scholar
  22. 22.
    Yvon-Durocher, G., Montoya, J. M., Trimmer, M., & Woodward, G. U. Y. (2011). Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17(4), 1681–1694. doi: 10.1111/j.1365-2486.2010.02321.x.CrossRefGoogle Scholar
  23. 23.
    Chapra, S. C., Pelletier, G. J., & Tao, H. (2007). QUAL2K: a modeling framework for simulating river and stream water quality, version 2.07: documentation and users manual. Medford: Civil and Environmental Engineering Dept., Tufts University.Google Scholar
  24. 24.
    Kowe, R., Skidmore, R. E., Whitton, B. A., & Pinder, A. C. (1998). Modelling phytoplankton dynamics in the River Swale, an upland river in NE England. Science of the Total Environment, 210–211, 535–546.CrossRefGoogle Scholar
  25. 25.
    Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool theoretical documentation—version 2005. (pp. 494 p.) Temple.Google Scholar
  26. 26.
    Robson, B. J., & Webster, I. T. (2006). Representing the effects of subgrid-scale variations in bathymetry on light and primary production. Environmental Modelling & Software, 21(6), 802–811. doi: 10.1016/j.envsoft.2005.02.007.CrossRefGoogle Scholar
  27. 27.
    Schöl, A., Kirchesch, V., Bergfeld, T., & Müller, D. (1999). Model-based analysis of oxygen budget and biological processes in the regulated rivers Moselle and Saar: modelling the influence of benthic filter feeders on phytoplankton. Hydrobiologia, 410, 167–176.CrossRefGoogle Scholar
  28. 28.
    Wade, A. J., Hornberger, G. M., Whitehead, P. G., Jarvie, H. P., & Flynn, N. J. (2001). On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: an assessment of a new model using general sensitivity analysis. Water Resources Research, 37(11), 2777–2792.CrossRefGoogle Scholar
  29. 29.
    Bartell, S. M., Lefebvre, G., Kaminski, G., Carreau, M., & Campbell, K. R. (1999). An ecosystem model for assessing ecological risks in Québec rivers, lakes, and reservoirs. Ecological Modelling, 124(1), 43–67.CrossRefGoogle Scholar
  30. 30.
    Park, R. A., Clough, J. S., & Wellman, M. C. (2008). AQUATOX: modeling environmental fate and ecological effects in aquatic ecosystems. Ecological Modelling, 213(1), 1–15.CrossRefGoogle Scholar
  31. 31.
    Sourisseau, S., Basseres, A., Perie, F., & Caquet, T. (2008). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Research, 42(4–5), 1167–1181.CrossRefGoogle Scholar
  32. 32.
    Lázár, A. N. (2010). Modelling fixed plant and algal dynamics in rivers. PhD thesis. University of Reading.Google Scholar
  33. 33.
    Wharton, G., Cotton, J. A., Wotton, R. S., Bass, J. A. B., Heppell, C. M., Trimmer, M., et al. (2006). Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK). Journal of Hydrology, 330(1–2), 171–184.CrossRefGoogle Scholar
  34. 34.
    Marsh, T. J., & Hannaford, J. (2008). UK hydrometric register. Hydrological data UK series (pp. 210p.) Centre for Ecology & Hydrology.Google Scholar
  35. 35.
    Sanders, I. A. (2006). The source, transformation and fate of particulate organic matter in stands of the aquatic macrophyte Ranunculus spp. PhD thesis. Queen Mary University of London.Google Scholar
  36. 36.
    Wheater, H. S., Peach, D., & Binley, A. (2007). Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR) hydrology and earth system sciences discussions. Copernicus Publications, 11(1), 108–124.Google Scholar
  37. 37.
    Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science & Technology, 37(14), 3039–3047. doi: 10.1021/es020663b.CrossRefGoogle Scholar
  38. 38.
    Bowes, M. J., Leach, D. V., & House, W. A. (2005). Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK. Science of the Total Environment, 336(1–3), 225–241.CrossRefGoogle Scholar
  39. 39.
    Whitehead, P. G., & Hornberger, G. M. (1984). Modelling algal behaviour in the River Thames. Water Resources, 18(8), 945–953.Google Scholar
  40. 40.
    Broughton, N. M., & Jones, N. V. (1978). An investigation into the growth of 0-group roach, (Rutilus rutilus L.) with special reference to temperature. Journal of Fish Biology, 12(4), 345–357.CrossRefGoogle Scholar
  41. 41.
    Thorp, J. H., & Delong, M. D. (1994). The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos, 70(2), 305–308.CrossRefGoogle Scholar
  42. 42.
    Roberts, S. (2007). The transport of sediment-associated contaminants through lowland permeable catchments. PhD thesis. Queen Mary University of London.Google Scholar
  43. 43.
    Sand-Jensen, K., & Pedersen, O. (1999). Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology, 42(2), 315–328.CrossRefGoogle Scholar
  44. 44.
    Trimmer, M., Sanders, I. A., & Heppell, C. M. (2009). Carbon and nitrogen cycling in a vegetated lowland chalk river impacted by sediment. Hydrological Processes, 23, 2225–2238.CrossRefGoogle Scholar
  45. 45.
    Jorgensen, S. E., Nielsen, S. N., & Jorgensen, L. A. (1991). Handbook of ecological parameters and ecotoxicology: Elsevier Science.Google Scholar
  46. 46.
    Jackson-Blake, L. A., Dunn, S. M., Helliwell, R. C., Skeffington, R. A., Stutter, M. I., & Wade, A. J. (2015). How well can we model stream phosphorus concentrations in agricultural catchments? Environmental Modelling & Software, 64, 31–46. doi: 10.1016/j.envsoft.2014.11.002.CrossRefGoogle Scholar
  47. 47.
    Spear, R. C., & Hornberger, G. M. (1980). Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14(1), 42–49.CrossRefGoogle Scholar
  48. 48.
    Franklin, P., Dunbar, M., & Whitehead, P. (2008). Flow controls on lowland river macrophytes: a review. Science of the Total Environment, 400(1–3), 369–378.CrossRefGoogle Scholar
  49. 49.
    Sand-Jensen, K., Borg, D., & Jeppesen, E. (1989). Biomass and oxygen dynamics of the epiphyte community in a Danish lowland stream. Freshwater Biology, 22(3), 431–443.CrossRefGoogle Scholar
  50. 50.
    CAMARGO, A. F. M., & FLORENTINO, E. R. (2000). Population dynamics and net primary production of the aquatic macrophite Nymphaea rudgeana C. F. Mey in a lotic environment of the Itanhaém River basin (SP, Brazil). Revista Brasileira de Biologia, 60, 83–92.CrossRefGoogle Scholar
  51. 51.
    Velasco, J., Millan, A., Vidal-Abarca, M. R., Suarez, M. L., Guerrero, C., & Ortega, M. (2003). Macrophytic, epipelic and epilithic primary production in a semiarid Mediterranean stream. Freshwater Biology, 48(8), 1408–1420. doi: 10.1046/j.1365-2427.2003.01099.x.CrossRefGoogle Scholar
  52. 52.
    Dawson, F. H. (1976). The annual production of the aquatic macrophyte Ranunculus penicillatus var. calcareus (RW Butcher) C.D.K. COOK. Aquatic Botany, 2, 51–73.CrossRefGoogle Scholar
  53. 53.
    Franklin, P. (2007). Dynamic analysis and modelling of hydroecology in two chalk streams (PhD thesis). University of Reading, Reading.Google Scholar
  54. 54.
    O’Hare, M. T., Clarke, R. T., Bowes, M. J., Cailes, C., Henville, P., Bissett, N., et al. (2010). Eutrophication impacts on a river macrophyte. Aquatic Botany, 92(3), 173–178. doi: 10.1016/j.aquabot.2009.11.001.CrossRefGoogle Scholar
  55. 55.
    Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., et al. (2012). Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment. doi: 10.1016/j.scitotenv.2011.09.082.Google Scholar
  56. 56.
    Bowes, M. J., Lehmann, K., Jarvie, H., & Singer, A. C. (2010). Investigating periphyton response to changing phosphorus concentrations in UK rivers using within-river flumes. Paper presented at the BHS Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle.Google Scholar
  57. 57.
    Bowes, M. J., Smith, J. T., Hilton, J., Sturt, M. M., & Armitage, P. D. (2007). Periphyton biomass response to changing phosphorus concentrations in a nutrient-impacted river: a new methodology for phosphorus target setting. Canadian Journal of Fisheries and Aquatic Sciences, 64(2), 227–238.CrossRefGoogle Scholar
  58. 58.
    Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences: Arnold.Google Scholar
  59. 59.
    Whitehead, P. G., Wilson, E. J., & Butterfield, D. (1998). A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I—model structure and process equations [nitrogen modelling]. Science of the Total Environment, 210(211), 547–558.CrossRefGoogle Scholar
  60. 60.
    Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., et al. (1985). Rates, constants, and kinetics formulations in surface water quality modeling (second edition). Report number EPA/600/3-85/040. (pp. 454p.). Athens: Environmental Research Laboratory, U.S. Environmental Protection Agency.Google Scholar
  61. 61.
    Hall, R. O., Wallace, J. B., & Eggert, S. L. (2000). Organic matter flow in stream food webs with reduced detrital resource base. Ecology, 81(12), 3445–3463. doi: 10.1890/0012-9658(2000)081[3445:OMFISF]2.0.CO;2.CrossRefGoogle Scholar
  62. 62.
    Bunn, S. E., Davies, P. M., & Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology, 48(4), 619–635. doi: 10.1046/j.1365-2427.2003.01031.x.CrossRefGoogle Scholar
  63. 63.
    Jarritt, N. P., & Lawrence, D. S. L. (2007). Fine sediment delivery and transfer in lowland catchments: modelling suspended sediment concentrations in response to hydrological forcing. Hydrological Processes, 21(20), 2729–2744.CrossRefGoogle Scholar
  64. 64.
    Michaelis, L., & Menten, M. (1913). Die Kinetik der Invertinwirkung. Biochemistry Zeitung, 49, 333–369.Google Scholar
  65. 65.
    Dawson, F. H. (1980). Flowering of Ranunculus penicillatus (Dum.) Bab. var. calcareus (R.W. Butcher) C. D. K. Cook in the River Piddle (Dorset, England). Aquatic Botany, 9, 145–157.CrossRefGoogle Scholar
  66. 66.
    Rodwell, J. S. (1995). British plant communities volume 4—aquatic communities, swamps and tall-herb fens. Cambridge University Press.Google Scholar
  67. 67.
    Haslam, S. M. (1978). River plants: the marophytic vegetation of watercourses. Cambridge: Cambridge University Press.Google Scholar
  68. 68.
    Riis, T., & Biggs, B. J. F. (2003). Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography, 48(4), 1488–1497.CrossRefGoogle Scholar
  69. 69.
    Heppell, C. M., Wharton, G., Cotton, J. A. C., Bass, J. A. B., & Roberts, S. E. (2009). Sediment storage in the shallow hyporheic of lowland vegetated river reaches. Hydrological Processes, 23(15), 2239–2251.CrossRefGoogle Scholar
  70. 70.
    Riber, H. H., Sorensen, J. P., & Schierup, H.-H. (1984). Primary productivity and biomass of epiphytes on Phragmites australis in a eutrophic Danish Lake. Holarctic Ecology, 7(2), 202–210.Google Scholar
  71. 71.
    Zimba, P. V., & Hopson, M. S. (1997). Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquatic Botany, 58(2), 173–179.CrossRefGoogle Scholar
  72. 72.
    Allan, J. D. (1995). Stream ecology: structure and function of running water. London: Chapman & Hall.CrossRefGoogle Scholar
  73. 73.
    Stevenson, R. J. (1996). The stimulation and drag of current. In R. J. Stevenson, Bothwell, M. L., Lowe, R. L. (Ed.), Algal ecology—freshwater benthic ecosystems (pp. 321–340, Aquatic Ecology Series). San Diego: Academic Press.Google Scholar
  74. 74.
    Walton, S. P., Welch, E. B., & Horner, R. R. (1995). Stream periphyton response to grazing and changes in phosphorus concentration. Hydrobiologia, 302, 31–46.CrossRefGoogle Scholar
  75. 75.
    Griffin, S. L., Herzfeld, M., & Hamilton, D. P. (2001). Modelling the impact of zooplankton grazing on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia. Ecological Engineering, 16(3), 373–394.CrossRefGoogle Scholar
  76. 76.
    Fovet, O., Belaud, G., Litrico, X., Charpentier, S., Bertrand, C., Dauta, A., et al. (2010). Modelling periphyton in irrigation canals. Ecological Modelling, 221(8), 1153–1161.CrossRefGoogle Scholar
  77. 77.
    Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press (pp. 384 p).Google Scholar
  78. 78.
    Collins, C. D., & Wlosinski, J. H. (1983). Coefficients for use in the U.S. Army Corps of Engineers Reservoir Model, CE-QUAL-R1. Technical report E-83-15. (pp. 120 pp.). Vicksburg, Mississippi, USA: U.S. Army Engineer Waterways Experiment Station.Google Scholar
  79. 79.
    Schöl, A., Kirchesch, V., Bergfeld, T., Schöll, F., Borcherding, J., & Müller, D. (2002). Modelling the chlorophyll content of the River Rhine—interaction between riverine algal production and population biomass of grazers, rotifers and zebra mussel, Dreissena polymorpha. International Review of Hydrobiology, 87(2–3), 295–317.CrossRefGoogle Scholar
  80. 80.
    Talling, J. F. (1957). Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytologist, 56(1), 29–50.CrossRefGoogle Scholar
  81. 81.
    Bissinger, J. E., Montagnes, D. J. S., Sharples, J., & Atkinson, D. (2008). Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnology and Oceanography, 53(2), 487–493.CrossRefGoogle Scholar
  82. 82.
    Jones, R. I. (1977). Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh): II. Phytoplankton production and its chief determinants. Journal of Ecology, 65(2), 561–577.CrossRefGoogle Scholar
  83. 83.
    Megard, R. O. (1972). Phytoplankton, photosynthesis, and phosphorus in Lake Minnetonka, Minnesota. Limnology and Oceanography, 17(1), 68–87.CrossRefGoogle Scholar
  84. 84.
    Sullivan, A. B., Rounds, S. A., Sobieszczyk, S., & Bragg, H. M. (2007). Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon. (pp. 52 p.): Scientific Investigations Report 2007–5008, U.S. Geological Survey.Google Scholar
  85. 85.
    Reddy, K. R., & DeBusk, W. F. (1985). Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: II. Azolla, Duckweed, and Salvinia. Economic Botany, 39(2), 200–208.CrossRefGoogle Scholar
  86. 86.
    Adams, M. S., Titus, J. E., & McCracken, M. (1974). Depth distribution of photosynthetic activity in a Myriophyllum spicatum community in Lake Wingra. Limnology and Oceanography, 19(3), 377–389.CrossRefGoogle Scholar
  87. 87.
    Van, T. K., Haller, W. T., & Bowes, G. (1976). Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology, 58(6), 761–768. doi: 10.1104/pp. 58.6.761.CrossRefGoogle Scholar
  88. 88.
    Wright, R. M., & McDonnell, A. J. (1986). Macrophyte growth in shallow streams: field investigations. Journal of Environmental Engineering, 112(5), 953–966.CrossRefGoogle Scholar
  89. 89.
    Best, E. P. H., Buzzelli, C. P., Bartell, S. M., Wetzel, R. L., Boyd, W. A., Doyle, R. D., et al. (2001). Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia, 444(1), 43–70.CrossRefGoogle Scholar
  90. 90.
    DeAngelis, D. L., Bartell, S. M., & Brenkert, A. L. (1989). Effects of nutrient recycling and food-chain length on resilience. The American Naturalist, 134(5), 778–805.CrossRefGoogle Scholar
  91. 91.
    Newman, R. M. (1991). Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society, 10(2), 89–114.CrossRefGoogle Scholar
  92. 92.
    Asaeda, T., & Van Bon, T. (1997). Modelling the effects of macrophytes on algal blooming in euthrophic shallow lakes. Ecological Modelling, 104, 261–287.CrossRefGoogle Scholar
  93. 93.
    DeNicola, D. M. (1996). Periphyton responses to temperature at different ecological levels. In R. J. Stevenson, Bothwell, M. L., Lowe, R. L. (Ed.), Algal ecology—freshwater benthic ecosystems (pp. 149–181, Aquatic Ecology Series). San Diego: Academic Press.Google Scholar
  94. 94.
    Flynn, N. J., Snook, D. L., Wade, A. J., & Jarvie, H. P. (2002). Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: the River Kennet, a tributary of the Thames. Science of the Total Environment, 282, 143–157.CrossRefGoogle Scholar
  95. 95.
    Quinlan, E. L., Phlips, E. J., Donnelly, K. A., Jett, C. H., Sleszynski, P., & Keller, S. (2008). Primary producers and nutrient loading in Silver Springs, FL, USA. Aquatic Botany, 88(3), 247–255.CrossRefGoogle Scholar
  96. 96.
    Vis, C., Hudon, C., & Carignan, R. (2006). Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1014–1026, doi: 10.1139/F06-021.
  97. 97.
    Marker, A. F. H. (1976). The benthic algae of some streams in Southern England: I. Biomass of the epilithon in some small streams. The Journal of Ecology, 64(1), 343–358.CrossRefGoogle Scholar
  98. 98.
    Ambrose, R. B., Martin, J. L., & Wool, T. A. (2006). WASP7 benthic algae—model theory and user’s guide. Washington: U.S. Environmental Protection Agency (pp. 32 p.).Google Scholar
  99. 99.
    Cerco, C. F., & Seitzinger, S. P. (1997). Measured and modeled effects of benthic algae on eutrophication in Indian River-Rehoboth Bay, Delaware. Estuaries, 20(1), 231–248.CrossRefGoogle Scholar
  100. 100.
    Sabater, S., Artigas, J., Durán, C., Pardos, M., Romaní, A. M., Tornés, E., et al. (2008). Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Environment, 404(1), 196–206.CrossRefGoogle Scholar
  101. 101.
    Traas, T., Janse, J., Aldenberg, T., & Brock, T. (1998). A food web model for fate and direct and indirect effects of Dursban® 4E (active ingredient chlorpyrifos) in freshwater microcosms. Aquatic Ecology, 32(2), 179–190.CrossRefGoogle Scholar
  102. 102.
    Odum, H. T. (1957). Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs, 27(1), 55–112.CrossRefGoogle Scholar
  103. 103.
    Atlas, D., & Bannister, T. T. (1980). Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species. Limnology and Oceanography, 25(1), 157–159.CrossRefGoogle Scholar
  104. 104.
    Titus, J. E., & Adams, M. S. (1979). Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia, 40(3), 273–286.CrossRefGoogle Scholar
  105. 105.
    Sand-Jensen, K., Jeppesen, E., Nielsen, K., Van Der Bijl, L., Hjermind, L., Wiggers Nielsen, L., et al. (1989). Growth of macrophytes and ecosystem consequences in a lowland Danish stream. Freshwater Biology, 22, 15–32.CrossRefGoogle Scholar
  106. 106.
    Frankovich, T. A., & Zieman, J. C. (2005). Periphyton light transmission relationships in Florida Bay and the Florida Keys, USA. Aquatic Botany, 83(1), 14–30.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Archaeology, Geography and Environmental ScienceUniversity of ReadingReadingUK
  2. 2.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.Civil, Maritime and Environmental Engineering and Science Unit, Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations