Advertisement

Environmental Modeling & Assessment

, Volume 20, Issue 3, pp 197–210 | Cite as

The Effect of Urban Expansion on Urban Surface Temperature in Shenyang, China: an Analysis with Landsat Imagery

  • Dongmei Lu
  • Kaishan Song
  • Shuying Zang
  • Mingming Jia
  • Jia Du
  • Chunying Ren
Article

Abstract

Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images were used to assess the urban expansion dynamics and the corresponding thermal characteristics in Shenyang City, China. Unsupervised classification (ISODATA) and a hierarchy decision tree were applied to eight scenes of the Landsat images to derive the land use/land cover (LULC) around the Shenyang metropolitan region from 1986 to 2007. Landsat TM/ETM+ thermal infrared (TIR) images (band 6) were used to investigate the urban surface thermal patterns by retrieving land surface temperature (LST) using a mono-window algorithm. Results reveal that the built-up area has doubled from 1986 (20.2 %) to 2007 (42.3 %), most of which is converted from croplands around the urban fringe area. The built-up area has close association with the population increase (R 2 = 0.89), the gross domestic production (R 2 = 0.94), and fixed asset investments (R 2 = 0.95). These illustrate the contributions of socioeconomic factors to the rapid urban expansion in Shenyang. Three urban heat island (UHI) indices [i.e., heat effect contribution index (H i ), weighted heat unit index (D 1), and regional weighted heat unit index (D 2)] were used to characterize the urban thermal patterns for removing the phenological effects and to confirm the linkage between UHI and urban expansion. Results show that urban areas have an obvious daytime heating effect (heat source) that is strongly correlated with urban expansion, wherein a higher percentage of an impervious surface is usually associated with a higher surface temperature. Further analyses indicate that urban expansion is fairly correlated to H i ' (R 2 = 0.63) but strongly to D 2 (R 2 = 0.91). Additional research is needed to further quantify the inner urban area to gain a better understanding of UHI resulting from various heat fluxes and urban components.

Keywords

Indicators Remote sensing Shenyang Urban heat island Urban expansion 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 41030743) and the National Basic Research Program of China (No. 2013CB430401). The authors would also like to thank Jin Cui for her assistance in image processing. We like to thank anonymous referees for their valuable comments that strengthened the manuscript. The last but not the least, we would like to thank Professor Lin Li from Indiana University-Purdue University, Indianapolis, for the language editing of the manuscript.

References

  1. 1.
    Boles, S. H., Xiao, X., Liu, J., Zhang, Q., Munkhtuya, S., Chen, S., & Ojima, D. (2004). Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sensing of Environment, 90, 477–489.CrossRefGoogle Scholar
  2. 2.
    Cheng, J. Q., Turkstra, J., Peng, M. J., Du, N. R., & Ho, P. (2006). Urban land administration and planning in China: opportunities and constraints of spatial data models. Land Use Policy, 23(1), 604–616.CrossRefGoogle Scholar
  3. 3.
    Chinese Association of Mayors (CAM). (2011). Chinese urban development report 2010. Beijing: China City Press.Google Scholar
  4. 4.
    Dai, X. Y., Guo, Z. Y., Zhang, L. Q., & Li, D. (2010). Spatio-temporal exploratory analysis of urban surface temperature field in Shanghai, China. Stochastic Environmental Research and Risk Assessment, 24, 247–257.CrossRefGoogle Scholar
  5. 5.
    Deng, C. B., & Wu, C. S. (2013). Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262–274.CrossRefGoogle Scholar
  6. 6.
    Gallo, K. P., Esterling, D. R., & Peterson, T. C. (1996). The influence of land use/land cover on climatological values of the diurnal temperature range. Journal of Climate, 9, 2941–2944.CrossRefGoogle Scholar
  7. 7.
    Gallo, K. P., Adegoke, J. O., Owen, T. W., & Elvidge, C. D. (2002). Satellite based detection of global urban heat-island temperature influence. Journal of Geophysical Research, 107, 4776–4782.CrossRefGoogle Scholar
  8. 8.
    Gao, B. C. (1996). NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.CrossRefGoogle Scholar
  9. 9.
    Gillies, R. R., & Carlson, T. N. (1995). Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology, 34, 745–756.CrossRefGoogle Scholar
  10. 10.
    Grubler, A. (1994). Technology. In W. B. Meyer & B. L. Turner II (Eds.), Changes in land use and land cover: a global perspective (pp. 287–328). Cambridge: Cambridge University Press.Google Scholar
  11. 11.
    Hung, T., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation, 8, 34–48.CrossRefGoogle Scholar
  12. 12.
    Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114, 504–513.CrossRefGoogle Scholar
  13. 13.
    Irish, R. (1998). Chapter 11: Data product. Landsat 7 science data user’s handbook.Google Scholar
  14. 14.
    Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., et al. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92, 475–482.CrossRefGoogle Scholar
  15. 15.
    Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531.CrossRefGoogle Scholar
  16. 16.
    Kato, S., & Yamaguchi, Y. (2005). Analysis of urban heat-island effect using ASTER and ETM+ Data: separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment, 99(1–2), 44–54.CrossRefGoogle Scholar
  17. 17.
    Kaufmann, R. K., Seto, K. C., Schneider, A., Liu, Z., Zhou, L., & Wang, W. (2007). Climate response to rapid urban growth: evidence of a human-induced precipitation deficit. Journal of Climate, 20(10), 2299–2306.CrossRefGoogle Scholar
  18. 18.
    Keller, C. F. (2009). Global warming: a review of this mostly settled issue. Stochastic Environmental Research and Risk Assessment, 23, 643–676.CrossRefGoogle Scholar
  19. 19.
    Lazzarini, M., Marpu, P. R., & Ghedira, H. (2013). Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130, 136–152.CrossRefGoogle Scholar
  20. 20.
    Li, Y. Y., Zhang, H., & Kainz, W. (2012). Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China using time-series of Landsat TM/ETM+ data. International Journal of Applied Earth Observation, 19, 127–138.CrossRefGoogle Scholar
  21. 21.
    Liu, J., Liu, M., Tian, H., Zhuang, D. F., Zhang, Z., Zhang, W., Tang, X., & Deng, X. (2005). Spatial and temporal patterns of China’s Cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sensing of Environment, 98, 442–456.CrossRefGoogle Scholar
  22. 22.
    Liu, Y., Kuang, Y. Q., Wu, Z. F., Huang, N. S., & Zhou, J. (2006). Impact of land use on urban land surface temperature: a case study of Dongguan, Guangdong Province. Journal of Geographical Sciences, 26(5), 597–602 (In Chinese).Google Scholar
  23. 23.
    Liu, W. J., Yang, H., Khan, S. I., Huang, M. B., Vieux, B., Caliskan, S., & Grout, T. (2010). Actual evapotranspiration estimation for different land use and land cover in urban regions using Landsat 5 data. Journal of Applied Remote Sensing, 4, 041873. doi: 10.1117/1.3525566.CrossRefGoogle Scholar
  24. 24.
    Lu, D., & Weng, Q. (2004). Spectral mixture analysis of the urban landscape in Indianapolis city with Landsat ETM+ imagery. Photogrammetric Engineering & Remote Sensing, 70(9), 1053–1062.CrossRefGoogle Scholar
  25. 25.
    McCarthy, M. P., Best, M. J., & Betts, R. A. (2010). Climate change in cities due to global warming and urban effects. Geophysical Research Letters, 37, L09705.CrossRefGoogle Scholar
  26. 26.
    National Bureau of Statistics of China (2011). Report for the sixth China Population Census. from http://www.stats.gov.cn/tjgb/rkpcgb/qgrkpcgb/t20110429_402722510.htm.
  27. 27.
    Pu, R. L., Gong, P., Michishit, R., & Sasagawa, T. (2006). Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sensing of Environment, 104, 211–225.CrossRefGoogle Scholar
  28. 28.
    Pu, R., Gong, P., Michishita, R., & Sasagawa, T. (2008). Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data. Remote Sensing of Environment, 112(3), 939–954.CrossRefGoogle Scholar
  29. 29.
    Qian, L. X., & Ding, S. Y. (2005). Pearl River Delta land cover change on surface temperature effects. Acta Geographica Sinica, 60(5), 761–770 (In Chinese).Google Scholar
  30. 30.
    Qin, Z., Kanieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22, 3719–3746.CrossRefGoogle Scholar
  31. 31.
    Qin, Z., Li, W., & Xu, B. (2004). Estimation method of land surface emissivity for retrieving land surface temperature from Landsat TM6 data. Advances in Materials Science, 22, 129–138.Google Scholar
  32. 32.
    Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.CrossRefGoogle Scholar
  33. 33.
    Song, K. S., Wang, Z. M., Liu, Q. F., Liu, D. W., Ermoshin, V. V., Ganzei, S. S., Zhang, B., Ren, C. Y., Zeng, L. H., & Du, J. (2011). Land Use/Land Cover (LULC) classification with MODIS time series data and validation in the Amur River Basin. Geography and Natural Resources, 32(1), 9–15.CrossRefGoogle Scholar
  34. 34.
    Song, K. S., Wang, Z. M., Li, L., Tedesco, L., Li, F., Jin, C., & Du, J. (2012). Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng-Xingkai Plain, China. Journal of Environmental Management, 111, 120–132.CrossRefGoogle Scholar
  35. 35.
    State Council of China Office of Population Census. (2001). China population census. Beijing: Statistical Press of China.Google Scholar
  36. 36.
    Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85, 282–289.CrossRefGoogle Scholar
  37. 37.
    Tang, Y. B. (1989). Urban land use in China: policy issue and options. Land Use Policy, 6(1), 53–63.CrossRefGoogle Scholar
  38. 38.
    Tian, G. J., Liu, J., Xie, Y., Yang, Z., Zhuang, D., & Niu, Z. (2005). Analysis of spatio-temporal dynamic pattern and driving factors of urban land in China in 1990s using TM images and GIS. Cities, 22(6), 400–410.CrossRefGoogle Scholar
  39. 39.
    Turner, B. L., II, Clark, W. C., Kates, R. W., Richard, J. F., Mathews, J. T., & Meyer, W. B. (1990). The earth as transformed by human action: global and regional change in the biosphere over the past 300 years. Cambridge: Cambridge Unversity Press.Google Scholar
  40. 40.
    Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban areas. Remote Sensing of Environment (special issue on Urban Areas), 86, 370–384.CrossRefGoogle Scholar
  41. 41.
    Weng, Q. H. (2003). Fractal analysis of satellite-detected urban heat island effect. Photogrammetric Engineering & Remote Sensing, 69, 555–566.CrossRefGoogle Scholar
  42. 42.
    Weng, Q. H. (2009). Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344.CrossRefGoogle Scholar
  43. 43.
    Weng, Q. H., & Lu, D. (2009). Landscape as a continuum: an examination of the urban landscape structures and dynamics of Indianapolis City, 1991–2000, by using satellite images. International Journal of Remote Sensing, 30(10), 2547–2577.CrossRefGoogle Scholar
  44. 44.
    Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.CrossRefGoogle Scholar
  45. 45.
    Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84, 493–505.CrossRefGoogle Scholar
  46. 46.
    Xia, J. S., Du, P. J., Zhang, H. R., & Liu, P. (2010). The quantitative relationship between land surface temperature and land cover types based on remotely sensed data. Remote Sensing Technology Application, 25(1), 15–23 (In Chinese).Google Scholar
  47. 47.
    Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104(2), 147–156.CrossRefGoogle Scholar
  48. 48.
    Xiao, X. M., Boles, S., Liu, J. Y., Zhuang, D. F., & Liu, M. L. (2002). Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sensing of Environment, 82, 335–348.CrossRefGoogle Scholar
  49. 49.
    Yue, W. Z., & Xu, J. H. (2007). The relationship between land surface temperature and NDVI with remote sensing. International Journal of Remote Sensing, 28(15), 3205–3226.CrossRefGoogle Scholar
  50. 50.
    Zeng, L. H., Song, K. S., Zhang, B., Li, L., & Wang, Z. M. (2011). Evapotranspiration estimation using moderate resolution imaging spectroradiometer products through a surface energy balance algorithm for land model in Songnen Plain, China. Journal of Applied Remote Sensing, 5, 053535. doi: 10.1117/1.3609840.CrossRefGoogle Scholar
  51. 51.
    Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.CrossRefGoogle Scholar
  52. 52.
    Zhang, L., & Zhao, S. (1998). Re-examining China’s ‘Urban’ concept and the level of urbanization. The China Quarterly, 154, 330–381 (In Chinese).CrossRefGoogle Scholar
  53. 53.
    Zhao, P. J. (2011). Managing urban growth in a transforming China: evidence from Beijing. Land Use Policy, 28, 96–109.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dongmei Lu
    • 1
  • Kaishan Song
    • 2
  • Shuying Zang
    • 3
  • Mingming Jia
    • 2
  • Jia Du
    • 2
  • Chunying Ren
    • 2
  1. 1.College of Computer ScienceJilin Jianzhu UniversityChangchunChina
  2. 2.Northeast Institute of Geography and Agroecology, CASChangchunChina
  3. 3.Geography Science CollegeHarbin Normal UniversityHarbinChina

Personalised recommendations