Advertisement

Environmental Modeling & Assessment

, Volume 20, Issue 2, pp 117–128 | Cite as

Modeling Potential Water Resource Impacts of Mediterranean Tourism in a Changing Climate

  • Josefin Klein
  • Karin Ekstedt
  • M. Todd Walter
  • Steve W. Lyon
Article

Abstract

A scenario analysis was conducted to explore the impacts of climate and land-water management changes using an 89-km2 catchment near the Navarino Environmental Observatory (NEO) located in southwestern Messenia, Greece, as a regionally representative case study. Our objective was to quantify potential impacts on groundwater storage and streamflow at the catchment scale. To achieve this, the simple Thornthwaite-Mather-based hydrological model was calibrated to 3 years of available data (2009–2011) and used to explore the following: (1) impacts of climate change (specifically, IPCC’s A2 and B2 projections for 2071–2100), (2) impacts of land-water management changes associated with expansion of tourism activities (specifically, the addition of irrigated golf courses), and (3) the combined impact of both climate and land-water management changes. The model results indicated potential vulnerability of water resources to future climate change which could, for example, reduce streamflow between 33 and 97 % of current annual flows depending on the scenario considered. Future land-water management change could also reduce streamflow (under the current climate) by 3 or 5 % depending on if the change involves export of water outside the catchment. Clearly, this would be exacerbated under coupled climate changes which highlights the importance of environmental monitoring (part of the mission of the NEO) to inform management and planning in this and other Mediterranean regions.

Keywords

Climate change Land-water management Mediterranean Water resources Tourism Hydrological modeling 

Notes

Acknowledgments

The work has (in part) been carried out within the framework of the Navarino Environmental Observatory (NEO), Messinia, Greece, a cooperation between Stockholm University, the Academy of Athens, and TEMES S.A. NEO is dedicated to research and education on the climate and environment of the Mediterranean region. Financial support from the Swedish International Development Agency (SIDA) Project Number SWE-2011-066 is acknowledged. Travel costs were in part financed by Stockholm University’s Strategic International Exchange Fund. Josephine Archibald is thanked for assistance at various stages of this study. Finally, Dr. Georgia Destouni is thanked for comments on an early version of this work that have helped improve this study.

Supplementary material

10666_2014_9418_MOESM1_ESM.docx (382 kb)
ESM 1 (DOCX 382 kb)

References

  1. 1.
    Alcamo, J., Moreno, J.M. Nováky, B., Bindi, M., Corobov, R. Devoy, R., Giannakopoulos, C., Martin, E. Olesen, J.E. and Shvidenko, A. (2007). Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden P.J. and Hanson, C.E., Eds., Cambridge University Press, Cambridge, UK, 541-580.Google Scholar
  2. 2.
    Beven, K. J. (1989). Changing ideas in hydrology—the case of physically-based models. Journal of Hydrology, 105, 157–172.CrossRefGoogle Scholar
  3. 3.
    Beven, K. J. (2001). Rainfall-runoff modeling: the primer. West Sussex: John Wiley & Sons. 360 pp.Google Scholar
  4. 4.
    Bishop, K., Lyon, S., & Dahlke, H. (2012). The relationship between land use and water. Eos, Transactions of the American Geophysical Union, 93(28), 259. doi: 10.1029/2012EO280004.CrossRefGoogle Scholar
  5. 5.
    Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637–643.CrossRefGoogle Scholar
  6. 6.
    Collick, A. S., Easton, Z. M., Montalto, F. A., Gao, B., Kim, Y., Day, L., & Steenhuis, T. S. (2006). Hydrological evaluation of septic disposal field design in sloping terrains. Journal of Environmental Engineering, 132(10), 1289–1297.CrossRefGoogle Scholar
  7. 7.
    D’Andria, R. and Morelli, G. (2002). Irrigation regime affects yield and oil quality of olive trees. Proc. 4th IS on Olive Growing. Eds. C. Vitagliano& G.P. Martelli. Acta Horticulturae, 586, 273-276.Google Scholar
  8. 8.
    Dahlke, H. E., Easton, Z. M., Fuka, D. R., Lyon, S. W., & Steenhuis, T. S. (2009). Modelling variable source area dynamics in a CEAP watershed. Ecohydrology, 2, 337–349. doi: 10.1002/eco.58.CrossRefGoogle Scholar
  9. 9.
    Dunne, T., & Leopold, L. B. (1978). Water in environmental planning (pp. 1–818). New York: W H Freeman and Company.Google Scholar
  10. 10.
    EGA (2013). European Golf Association. Statistics. http://www.ega-golf.ch/050000/050200.asp (visited 2013-04-04).
  11. 11.
    Ekstedt, K. (2013). Local water resource assessment in Messinia, Greece. MSc Thesis, Stockholm Sweden: Stockholm University.Google Scholar
  12. 12.
    ESDAC (2012). European Soil Data Centre. http://eusoils.jrc.ec.europa.eu/wrb/ (visited 2012-10-19)
  13. 13.
    FAO (2012). FAO: water development and management unit, crop water information: olive. http://www.fao.org/nr/ water/cropinfo_olive.html (visited 2012-09-24)
  14. 14.
    Fernández, J. E., Díaz-Espejo, A., Infante, J. M., Durán, P., Palomo, M. J., Chamorro, V., Girón, I. F., & Villagarcía, L. (2006). Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying. Plant and Soil, 284(1–2), 273–291.CrossRefGoogle Scholar
  15. 15.
    Fernandes-Silva, A. A., Ferreira, T. C., Correira, C. M., Malheiro, A. C., & Villalobos, F. J. (2010). Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant and Soil, 333, 35–47.CrossRefGoogle Scholar
  16. 16.
    Gao, X., & Giorgi, F. (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 62, 195–209.CrossRefGoogle Scholar
  17. 17.
    Gleick, P. H. (1986). Methods for evaluating the regional hydrologic impacts of global climatic changes. Journal of Hydrology, 88, 97–116.CrossRefGoogle Scholar
  18. 18.
    Giannakopoulos, C., Kostopoulou, E., Varotsos, K. V., Tziotziou, K., & Plitharas, A. (2011). An integrated assessment of climate change impacts for Greece in the near future. Regional Environmental Change, 11, 829–843.CrossRefGoogle Scholar
  19. 19.
    Giorgi, F., Whetton, P. W., Jones, R. G., Christensen, J. H., Mearns, L. O., Hewitson, B., von Storch, H., Francisco, R., & Jack, C. (2001). Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophysical Research Letters, 28(17), 3317–3320.CrossRefGoogle Scholar
  20. 20.
    Gössling, S., Peeters, P., Hall, M. C., Ceron, J.-P., Dubois, G., Lehmann, V., & Scott, D. (2012). Tourism and water use: supply, demand, and security. An international review. Tourism Management, 33, 1–15.CrossRefGoogle Scholar
  21. 21.
    Hayhoe, K. A. (2010). A standardized framework for evaluating the skill of regional climate downscaling techniques. PhD Dissertation, University of Illinois at Urbana-Champaign.Google Scholar
  22. 22.
    Hay, L. E., Wilby, R. L., & Leavesley, G. H. (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association, 36, 387–397.CrossRefGoogle Scholar
  23. 23.
    Iglesias, A., Garrote, L., Flores, F., & Moneo, M. (2007). Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resource Management, 21, 775–788.CrossRefGoogle Scholar
  24. 24.
    Iniesta, F., Testi, L., Orgaz, F., and Villalobos, F.J. (2009). The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees, European Journal of Agronomy, 30, 258-265.Google Scholar
  25. 25.
    Jaramillo, F., Prieto, C., Lyon, S. W., & Destouni, G. (2013). Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden. Journal of Hydrology, 484, 55–62. doi: 10.1016/j.jhydrol.2013.01.010.CrossRefGoogle Scholar
  26. 26.
    Jakeman, A. J., & Hornberger, G. M. (1993). How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8), 2637–2649.CrossRefGoogle Scholar
  27. 27.
    Kerkides, P., Michalopoulou, H., Papaioannou, G., & Pollatou, R. (1996). Agricultural Water Management, 32, 85–104.CrossRefGoogle Scholar
  28. 28.
    Kittel, T. G. F., Giorgi, F., & Meehl, G. A. (1998). Intercomparsion of regional biases and doubled CO2-sensitivity of coupled atmosphere-ocean general circulation model experiments. Climate Dynamics, 14, 1–15.CrossRefGoogle Scholar
  29. 29.
    Klein, J. (2013). Water resource sensitivity from a Mediterranean perspective. Using a hydrolgoical model to explore the combined impacts of climate and land-water management changes. MSc Thesis, Stockholm Sweden: Stockholm University.Google Scholar
  30. 30.
    KNMI (2012). The Royal Netherlands Meteorological Institute, monthly temperature and precipitation in Kalamata, http://climexp.knmi.nl (visited 2012-12-17)
  31. 31.
    Koutsouris, A.J., J. Jarsjö, G. Destouni, and S.W. Lyon (2010). Hydro-climatic trends and water resource management implications based on multi-scale data in the Lake Victoria region, Kenya. Environmental Research Letters, 5, doi: 10.1088/1748-9326/5/3/034005.
  32. 32.
    Lazarova, V., Levine, B., Sack, J., Cirelli, G., Jeffrey, P., Muntau, H., Salgot, M., & Brissaud, F. (2001). Role of water reuse for enhancing integrated water management in Europe and Mediterranean countries. Water Science and Technology, 43(10), 25–33.Google Scholar
  33. 33.
    Lehman, V. G., & Engelke, M. C. (1991). Heritability estimates of creeping bentgrass root systems grown in flexible tubes. Crop Science, 31, 1680–1684.CrossRefGoogle Scholar
  34. 34.
    Lundholm, G., Borgström, I. and Kleman, J. (2010). Land cover of Messinia, Greece. Stockholm University, Deptartment of Physical Geography and Quaternary Geology. Navarino Environmental Observatory. 2010.Google Scholar
  35. 35.
    Lyon, S. W., Walter, M. T., Jantze, E. J., & Archibald, J. A. (2013). Training hydrologists to be ecohydrologists: a ‘how-you-can-do-it’ example leveraging an active learning environment for studying plant-water interaction. Hydrology and Earth System Sciences, 17, 269–279. doi: 10.5194/hess-17-269-2013.CrossRefGoogle Scholar
  36. 36.
    Marcum, K. B., Engelke, M. C., Morton, S. J., & White, R. H. (1995). Rooting characteristics and associated drought resistance of zoysiagrasses. Agronomy Journal, 87, 534–538.CrossRefGoogle Scholar
  37. 37.
    Markwick, M. C. (2000). Case Study golf tourism development, stakeholders, differing discourses and alternative agendas: the case of Malta. Tourism Management, 21, 515–524.Google Scholar
  38. 38.
    Mazi, K., Koussis, A. D., & Destouni, G. (2013). Tipping points for seawater intrusion in coastal aquifers under rising sea level. Environmental Research Letters, 8(1), L014001.CrossRefGoogle Scholar
  39. 39.
    Milano, M. (2010). The foreseeable impacts of climate change on the water resources of four major Mediterranean catchment basins. Sophia Antipolis: Plan Bleu Regional Activity Centre.Google Scholar
  40. 40.
    Palomo, M. J., Moreno, F., Fernández, J. E., Díaz-Espejo, A., & Girón, I. F. (2002). Determining water consumption in olive orchards using the water balance approach. Agricultural Water Management, 55(1), 15–35.CrossRefGoogle Scholar
  41. 41.
    Pandey, D. N., Gupta, A. K., & Anderson, D. M. (2003). Rainwater harvesting as an adaptation to climate change. Current Science, 85(1), 46–59.Google Scholar
  42. 42.
    Patumi, M., D’Andria, R., Marsilio, V., Fontanazza, G., Morelli, G., & Lanza, B. (2002). Olive and olive oil quality after intensive monocone olive growing (Oleaeuropaea L., cv. Kalamata) in different irrigation regimes. Food Chemistry, 77, 27–34.CrossRefGoogle Scholar
  43. 43.
    Pearce, F. (1993). How green is your golf? New Scientist, 139(1892), 30–35.Google Scholar
  44. 44.
    Perry, A. (2006). Will predicted climate change compromise the sustainability of Mediterranean tourism? Journal of Sustainable Tourism, 14(4), 367–375.CrossRefGoogle Scholar
  45. 45.
    Poff, N.L, Brinson M.M, and Day, J.W. (2002). Aquatic ecosystems and global climate change: potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Center for Global Change 1-44.Google Scholar
  46. 46.
    Priestly, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92.CrossRefGoogle Scholar
  47. 47.
    Priestley, G. K. (2006). Planning implications of golf tourism. Tourism and Hospitality Research, 6(3), 170–178.CrossRefGoogle Scholar
  48. 48.
    Rico-Amoros, A. M., Olcina-Cantos, J., & Sauri, D. (2009). Tourist land use patterns and water demand: evidence from the Western Mediterranean. Land Use Policy, 26, 493–501.CrossRefGoogle Scholar
  49. 49.
    Schaefli, B., Harman, C. J., Sivapalan, M., & Schymanski, S. J. (2011). Hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences, 15, 635–646.CrossRefGoogle Scholar
  50. 50.
    Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72(3), 311–328.CrossRefGoogle Scholar
  51. 51.
    Serra, P., Pons, X., & Sauri, D. (2008). Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Applied Geography, 28, 189–209.CrossRefGoogle Scholar
  52. 52.
    Silva, J. S., & Rego, F. C. (2003). Root distribution of a Mediterranean shrubland in Portugal. Plant and Soil, 255, 529–540.CrossRefGoogle Scholar
  53. 53.
    Steenhuis, T. S., Collick, A. S., Easton, Z. M., Leggesse, E. S., Bayabil, H. K., White, E. D., Awulachew, S. B., Adgo, E., & Ahmed, A. A. (2009). Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrological Processes, 23(26), 3651–3770.CrossRefGoogle Scholar
  54. 54.
    Steenhuis, T. S., & Van der Molen, W. H. (1986). The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. Journal of Hydrology, 84, 221–229.CrossRefGoogle Scholar
  55. 55.
    TEMES (2013). Sustainability, Environment, Golf and eco values.http://www.costanavarino.com/ (visited 2013-03-21)
  56. 56.
    Thiel, A. (2010). Constructing a strategic, national resource: European policies and the up-scaling of water services in the Algarve, Portugal. Environmental Management, 46, 44–59.CrossRefGoogle Scholar
  57. 57.
    Vörösmarty, C. H., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289, 284–288.CrossRefGoogle Scholar
  58. 58.
    Wagener, T., Wheater, H. S., & Gupta, H. V. (2004). Rainfall-runoff modelling in gauged and ungauged catchments (pp. 1–306). London: Imperial College Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Josefin Klein
    • 1
  • Karin Ekstedt
    • 1
  • M. Todd Walter
    • 2
  • Steve W. Lyon
    • 1
  1. 1.Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  2. 2.Biological and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations