Environmental Modeling & Assessment

, Volume 19, Issue 3, pp 179–192 | Cite as

Differences in the Spatial Distribution and Chemical Composition of PM10 Between the UK and Poland

  • Małgorzata Werner
  • Maciej Kryza
  • Anthony J. Dore


The Fine Resolution Atmospheric Multi-pollutant Exchange Model was used to calculate the spatial distribution and chemical composition of PM10 concentrations for two geographically remote countries in Europe—the UK and Poland—for the year 2007. These countries are diverse in terms of pollutant emissions as well as climate conditions. Information on the contribution of natural and anthropogenic as well as national and imported particles in total PM10 concentrations in both countries is presented. The paper shows that the modelled national annual average PM10 concentrations, calculated for the entire country area, are similar for the UK and Poland and close to 12 μg m−3. Secondary inorganic aerosols dominate the total PM10 concentrations in Poland. Primary particulate matter has the greatest contribution to total PM10 in the UK, with large contribution of base cations. Anthropogenic sources predominate (81 %) in total PM10 concentrations in Poland, whereas natural prevail in the UK—hence, the future reduction of PM10 air concentrations by emissions reduction could be more difficult in the UK than in Poland.


Particulate matter Air concentration Chemical composition UK Poland 



This work was supported by the Department for the Environment, Food and Rural Affairs (DEFRA, UK) and The Polish National Science Centre (number UMO-2012/05/B/ST10/00446). Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant no. 170. The authors are grateful to David Simpson (EMEP) for provision of modelled data on organic aerosol concentrations.


  1. 1.
    Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., et al. (2011). Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 102, 191–205.CrossRefGoogle Scholar
  2. 2.
    Artíñano, B., Querol, X., Salvador, P., Rodiquez, S., Alonso, D., & Alastuey, A. (2001). Assessment of airborne particulate levels in Spain in relation to the new EU-directive. Atmospheric Environment, 35, 43–53.CrossRefGoogle Scholar
  3. 3.
    AQEG. (2005). Particulate matter in the United Kingdom (p. 30). London: Air Quality Expert Group, Department for Environment, Food and Rural Affairs.Google Scholar
  4. 4.
    Barrett, K., Seland, Ø. (1995). European transboundary acidifying air pollution—Ten years calculated field and budgets to the end of the first sulphur protocol. European Transboundary Acidifying Air Pollution—EMEP/MSC-W Report 1/95, str. 150. Oslo: Norwegian Meteorological InstituteGoogle Scholar
  5. 5.
    Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., & Simpson, D. (2012). Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: Application of different assumptions regarding the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 12, 8499–8527.CrossRefGoogle Scholar
  6. 6.
    Borrego, C., Monteiro, A., Ribeiro, I., Miranda, A., Pay, M. T., Basart, S., Baldasano, J. M. (2011). How different air quality forecasting systems (should) operate over Portugal? In J. G. Bartzis, A. Syrakos, & S. Andronopoulos (Eds.), Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (pp. 47–51). Greece: Environmental Technology Laboratory, Department of Mechanical Engineering, University of West Macedonia.Google Scholar
  7. 7.
    Chemel, C., Sokhi, R. S., Dore, A. J., Sutton, P., Vincent, K. J., Griffiths, S. J., Hayman, G. D., Wright, R. D., Baggaley, M., Hallsworth, S., Prain, H. D., Fisher, B. E. A. (2011). Predictions of U.K. regulated power station contributions to regional air pollution and deposition: A model comparison exercise. Journal of the Air & Waste Management Association, 61, 1236–1245. doi: 10.1080/10473289.2011.609756.Google Scholar
  8. 8.
    Delalieux, F., van Grieken, R., & Potgieter, J. (2006). Distribution of atmospheric marine salt depositions over Continental Western Europe. Marine Pollution Bulletin, 52, 606–611.CrossRefGoogle Scholar
  9. 9.
    Dębski, B., Olendrzyński, K., Cieślińska, J., Kargulewicz, I., Skośkiewicz, J., Olecka, A., Kania, K. (2009). Inwentaryzacja emisji do powietrza SO2, NO2, CO, NH3, pyłów, metali ciężkich NMLZO i TZO w Polsce za rok 2007, Warszawa: Instytyt Ochrony Środowiska, Krajowe Centrum Inwentaryzacji Emisji, pp. 96.Google Scholar
  10. 10.
    Dore, A. J., Choularton, T. W., & Fowler, D. (1992). An improved wet deposition map of the United Kingdom incorporating the seeder–feeder effect over mountainous terrain. Atmospheric Environment, 26A, 1375–1381.CrossRefGoogle Scholar
  11. 11.
    Dore, A. J., Vieno, M., Fournier, N., Weston, K. J., & Sutton, M. A. (2006). Development of a new wind rose for the British Isles using radiosonde data and application to an atmospheric transport model. Quarterly Journal of the Royal Meteorological Society, 132, 2769–2784.CrossRefGoogle Scholar
  12. 12.
    Dore, A. J., Vieno, M., Tang, Y. S., Dragosits, U., Dosio, A., Weston, K. J., et al. (2007). Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 41, 2355–2367. doi: 10.1016/j.atmosenv.2006.11.013.CrossRefGoogle Scholar
  13. 13.
    Dore A.J., Kryza M., Hallsworth S., Matejko M., Hall M., Zhang Y., Bealey B., Vieno M., Tang S., Smith R., Dragosits U., Sutton M., (2009). Modelling the deposition and concentration of long range air pollutants, NERC/Centre for Ecology & Hydrology, p. 65. http://nora.nerc.ac.uk/9324/1/CO3021_Final_report_2009_10_09b.pdf.
  14. 14.
    Dragosits, U., Sutton, M. A., Place, C. J., Bayley, A. A. (1998). Modelling the spatial distribution of agricultural ammonia emissions in the United Kingdom. Environmental Pollution, 102 (Supp/1), 195–203.Google Scholar
  15. 15.
    Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science and Technology, 6(3), 337–346.CrossRefGoogle Scholar
  16. 16.
    Fournier, N., Dore, A., Vieno, M., Weston, K., Dragosits, U., & Sutton, M. (2004). Modelling the deposition of atmospheric oxidized nitrogen and sulphur to the UK using a multi-layer long-range transport model. Atmospheric Environment, 38, 683–694.CrossRefGoogle Scholar
  17. 17.
    Gong, S. L. (2003). A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochemical Cycles, 17(4), 1097–1104. doi: 10.1029/2003GB002079.CrossRefGoogle Scholar
  18. 18.
    Hernández-Soriano, M., Peña, A., & Mingorance, D. (2011). Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation. Journal of Environmental Monitoring, 13, 2830–2837. doi: 10.1039/c1em10223k.CrossRefGoogle Scholar
  19. 19.
    Hoek, G., Meliefste, K., Cyrys, J., Lewn’e, M., Bellander, T., Brauer, M., & Brunekreef, B. (2002). Spatial variability of fine particle concentrations in three European areas. Atmospheric Environment, 36, 4077–4088.CrossRefGoogle Scholar
  20. 20.
    Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., & Vonmont, H. (2005). Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmospheric Environment, 39, 637–651.CrossRefGoogle Scholar
  21. 21.
    Kang, D., Mathur, R., Rao, S. T., Yu, S. (2008). Bias adjustment techniques for improving ozone air quality forecasts. Journal of Geophysic Research, 113 (D23308), doi:  10.1029/2008JD010151.
  22. 22.
    Korcz, M., Fudala, J., & Klis, C. (2009). Estimation of wind blown dust emissions in Europe and its vicinity. Atmospheric Environment, 43, 1410–1420.CrossRefGoogle Scholar
  23. 23.
    Kryza, M. (2008). Application and validation of the residual kriging metod for interpolation of the monthly precipitation in Poland. Annual Geomatics, 4, 107–113.Google Scholar
  24. 24.
    Kryza, M., Matejko, M., Błaś, M., Dore, A., & Sobik, M. (2010). The effect of emission from coal combustion in non-industrial sources on deposition of sulphur and nitrogen oxides in Poland. Journal of Air and Waste Management Association, 60, 856–866. doi: 10.3155/1047-3289.60.7.856.CrossRefGoogle Scholar
  25. 25.
    Kryza, M., Dore, A. J., Błaś, M., & Sobik, M. (2011). Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology. Journal of Environmental Management, 92, 1225–1236.CrossRefGoogle Scholar
  26. 26.
    Kryza, M., Werner, M., Dore, A. J., Błaś, M., & Sobik, M. (2012). The role of annual circulation and precipitation on national scale deposition of atmospheric sulphur and nitrogen compounds. Journal Of Environmental Management, 109, 70–79. doi: 10.1016/j.jenvman.2012.04.048.CrossRefGoogle Scholar
  27. 27.
    Łobocki, L. (2003). Wskazówki metodyczne dotyczące modelowanie matematycznego w systemie zarządzania jakością powietrza (p. 59). Główny Inspektorat Ochrony Środowiska: Warszawa.Google Scholar
  28. 28.
    Matejko, M., Dore, A. J., Hall, J., Dore, C. J., Błaś, M., Kryza, M., et al. (2009). The influence of long term trends in pollutant emissions on deposition of sulphur and nitrogen and exceedance of critical loads in the United Kingdom. Environmental Science and Policy, 12, 882–896.CrossRefGoogle Scholar
  29. 29.
    Mc Keen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E. Y., Gong, W., Bouchet, V., Menard, S., Moffet, R., McHenry, J., McQueen, J., Tang, Y., Carmichael, G. R., Pagowski, M., Chan, A., Chan, A., Dye, T., Frost, G., Lee, P., Mathur, R. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysic Research, 110, doi:  10.1029/2005JDO05858.
  30. 30.
    Monahan, E. C., Spiel, D. E., & Davidson, K. L. (1986). A model of marine aerosol generation via whitecaps and wave disruption. In E. C. Monahan & G. MacNiocaill (Eds.), Oceanic whitecaps and their role in air-sea exchange processes (pp. 167–174). Dordrecht: Reidel.Google Scholar
  31. 31.
    Monteiro, A., Ribeiro, I., Tchepel, O., Carvalho, A., Sá, E., Ferreira, J., Borrego, C. (2011). BIAS correction and ensemble techniques to improve air quality assessment: focus on O3 and PM over Portugal. In J. G. Bartzis, A. Syrakos, & S. Andronopoulos (Eds.), Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (pp. 22–27). Greece: Environmental Technology Laboratory, Department of Mechanical Engineering, University of West Macedonia.Google Scholar
  32. 32.
    Nel, A. (2005). Air pollution-related illness: Effects of particles. Science, 308, 804–806.CrossRefGoogle Scholar
  33. 33.
    Nho-Kim, E. Y., Michou, M., & Peuch, V. (2004). Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmospheric Environment, 38, 1933–1942.CrossRefGoogle Scholar
  34. 34.
    Perez, N., Pey, J., Querol, X., Alastuey, A., Lopez, J. M., & Viana, M. (2008). Partitioning of major and trace components in PM10, PM2.5 and PM1 at an urban site in Southern Europe. Atmospheric Environment, 42, 1677–1691.CrossRefGoogle Scholar
  35. 35.
    Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Ito, K. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287, 1132–1141. doi: 10.1001/jama.287.9.1132.CrossRefGoogle Scholar
  36. 36.
    Pueschel, R. F. (1995). Atmospheric aerosol. Composition, chemistry, and climate of the atmosphere (pp. 120–175). New York: Van Nostrand Reinhold.Google Scholar
  37. 37.
    Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., et al. (2004). A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2579–2595.CrossRefGoogle Scholar
  38. 38.
    Raghunath, R., Tripathi, R. M., Kumar, A. V., Sathe, A. P., Khandekar, R. N., & Nambi, K. S. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai. Environmental Research, 80(3), 215–221.CrossRefGoogle Scholar
  39. 39.
    Ruijgrok, W., Davidson, C. I., & Nicholson, K. W. (1995). Dry deposition of particles—implication and recommendations for mapping of deposition over Europe. Tellus, 47B, 587–601.CrossRefGoogle Scholar
  40. 40.
    Ruijgrok, W., Tieben, H., & Eisinga, P. (1997). The dry deposition of particles to a forest canopy: Comparison of model and experimental results. Atmospheric Environment, 31, 399–415.CrossRefGoogle Scholar
  41. 41.
    Ru-Zhong, L., Zhou, A.-J., Tong, F., Wu, Y.-D., Zhang, P., & Yu, J. (2011). Distribution of metals in urban dusts of Hefei and health risk assessment. Huan Jing Ke Xue, 32(9), 2661–2669.Google Scholar
  42. 42.
    Simpson, D., Gelencser, A., Caseiro, A., Klimont, Z., Kupiainen, K., Legrand, M., Yttr, K. (2007). Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL. Journal of Geophysical Research, 112, D23S14. doi:  10.1029/2006JD008158.
  43. 43.
    Simpson, D., Benedictow, A., Berge, H., Bergstrom, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Ny’ıri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A’ ., and Wind, P. (2012). The EMEP MSC-W chemical transport model—technical description. Atmospheric Chemistry and Physics, 12, 7825–7865. doi: 10.5194/acp-12- 7825–2012.Google Scholar
  44. 44.
    Singles, R. J., Sutton, M. A., & Weston, K. J. (1998). A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain. Atmospheric Environment, 32, 393–399.CrossRefGoogle Scholar
  45. 45.
    Smith, M. H., & Harrison, N. M. (1998). The sea spray generation function. Journal of Aerosol Science, 29, 189–190.CrossRefGoogle Scholar
  46. 46.
    Stedman, J. R., Kent, A. J., Grice, S. B., & Derwent, R. G. (2007). A consistent method for modelling PM10 and PM2.5 concentrations across the United Kingdom in 2004 for air quality assessment. Atmospheric Environment, 41, 161–172.CrossRefGoogle Scholar
  47. 47.
    Tsyro, S. (2005). To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5. Atmospheric Chemistry and Physics, 5, 515–532.CrossRefGoogle Scholar
  48. 48.
    Van Loon, G. W., Duffy, S. J. (2008). Chemia środowiska. (W. Boczoń, L. Wachowski, Tłumaczenie) Warszawa: Wydawnictwo Naukowe PWN.Google Scholar
  49. 49.
    Vieno, M. (2005). The use of an Atmospheric Chemistry-Transport Model (FRAME) over the UK and development of its numerical and physical schemes. PhD thesis, University of Edinburgh.Google Scholar
  50. 50.
    Vieno, M., Dore, A. J., Stevenson, D. S., Doherty, R., Heal, M., Reis, S., et al. (2010). Modelling surface ozone during the 2003 heat-wave in the UK. Atmospheric Chemistry and Physics, 10, 7963–7978. doi: 10.5194/acp-10-7963-2010.CrossRefGoogle Scholar
  51. 51.
    Werner, M., Kryza, M., Dore, A. J., Błaś, M., Hallsworth, S., Vieno, M., et al. (2011). Modelling of marine base cation emissions, concentrations and deposition in the UK. Atmospheric Chemistry and Physics, 11, 1023–1037.CrossRefGoogle Scholar
  52. 52.
    Werner, M., Kryza, M., Dore, A. J., Hallsworth, S., & Błaś, M. (2012). Modelling emission, concentration and deposition of sodium for Poland. International Journal of Environment and Pollution, 50, 164–174.Google Scholar
  53. 53.
    Whall, C., Scarbrough, T., Stavrakaki, A., Green, C., Squire, J., Noden, R. (2010). UK Ship Emissions Inventory. Final Report. Entec UK Limited for Department of Environment, Food and Rural Affairs.Google Scholar
  54. 54.
    Yin, J., Harrison, R. M., Chen, Q., Rutter, A., & Schauer, J. J. (2010). Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment, 44, 841–851.CrossRefGoogle Scholar
  55. 55.
    Yttri, K. E., Aas, W., Tørseth, K., Stebel, K., Tsyro, S., Simpson, D., Schroedter-Homscheidt, M. (2009). Transboundary particulate matter in Europe—status report 2009. Joint CCC, MSC-W, CEIP and CIAM ReportGoogle Scholar
  56. 56.
    Zhang, L., Gong, S., Padro, J., & Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35, 549–560.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Małgorzata Werner
    • 1
  • Maciej Kryza
    • 1
  • Anthony J. Dore
    • 2
  1. 1.Department of Climatology and Atmosphere ProtectionUniversity of WrocławWrocławPoland
  2. 2.Centre for Ecology and HydrologyPenicuikUK

Personalised recommendations