Skip to main content
Log in

Differences in the Spatial Distribution and Chemical Composition of PM10 Between the UK and Poland

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The Fine Resolution Atmospheric Multi-pollutant Exchange Model was used to calculate the spatial distribution and chemical composition of PM10 concentrations for two geographically remote countries in Europe—the UK and Poland—for the year 2007. These countries are diverse in terms of pollutant emissions as well as climate conditions. Information on the contribution of natural and anthropogenic as well as national and imported particles in total PM10 concentrations in both countries is presented. The paper shows that the modelled national annual average PM10 concentrations, calculated for the entire country area, are similar for the UK and Poland and close to 12 μg m−3. Secondary inorganic aerosols dominate the total PM10 concentrations in Poland. Primary particulate matter has the greatest contribution to total PM10 in the UK, with large contribution of base cations. Anthropogenic sources predominate (81 %) in total PM10 concentrations in Poland, whereas natural prevail in the UK—hence, the future reduction of PM10 air concentrations by emissions reduction could be more difficult in the UK than in Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., et al. (2011). Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 102, 191–205.

    Article  CAS  Google Scholar 

  2. Artíñano, B., Querol, X., Salvador, P., Rodiquez, S., Alonso, D., & Alastuey, A. (2001). Assessment of airborne particulate levels in Spain in relation to the new EU-directive. Atmospheric Environment, 35, 43–53.

    Article  Google Scholar 

  3. AQEG. (2005). Particulate matter in the United Kingdom (p. 30). London: Air Quality Expert Group, Department for Environment, Food and Rural Affairs.

    Google Scholar 

  4. Barrett, K., Seland, Ø. (1995). European transboundary acidifying air pollution—Ten years calculated field and budgets to the end of the first sulphur protocol. European Transboundary Acidifying Air Pollution—EMEP/MSC-W Report 1/95, str. 150. Oslo: Norwegian Meteorological Institute

  5. Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., & Simpson, D. (2012). Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: Application of different assumptions regarding the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 12, 8499–8527.

    Article  Google Scholar 

  6. Borrego, C., Monteiro, A., Ribeiro, I., Miranda, A., Pay, M. T., Basart, S., Baldasano, J. M. (2011). How different air quality forecasting systems (should) operate over Portugal? In J. G. Bartzis, A. Syrakos, & S. Andronopoulos (Eds.), Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (pp. 47–51). Greece: Environmental Technology Laboratory, Department of Mechanical Engineering, University of West Macedonia.

  7. Chemel, C., Sokhi, R. S., Dore, A. J., Sutton, P., Vincent, K. J., Griffiths, S. J., Hayman, G. D., Wright, R. D., Baggaley, M., Hallsworth, S., Prain, H. D., Fisher, B. E. A. (2011). Predictions of U.K. regulated power station contributions to regional air pollution and deposition: A model comparison exercise. Journal of the Air & Waste Management Association, 61, 1236–1245. doi:10.1080/10473289.2011.609756.

    Google Scholar 

  8. Delalieux, F., van Grieken, R., & Potgieter, J. (2006). Distribution of atmospheric marine salt depositions over Continental Western Europe. Marine Pollution Bulletin, 52, 606–611.

    Article  CAS  Google Scholar 

  9. Dębski, B., Olendrzyński, K., Cieślińska, J., Kargulewicz, I., Skośkiewicz, J., Olecka, A., Kania, K. (2009). Inwentaryzacja emisji do powietrza SO2, NO2, CO, NH3, pyłów, metali ciężkich NMLZO i TZO w Polsce za rok 2007, Warszawa: Instytyt Ochrony Środowiska, Krajowe Centrum Inwentaryzacji Emisji, pp. 96.

  10. Dore, A. J., Choularton, T. W., & Fowler, D. (1992). An improved wet deposition map of the United Kingdom incorporating the seeder–feeder effect over mountainous terrain. Atmospheric Environment, 26A, 1375–1381.

    Article  CAS  Google Scholar 

  11. Dore, A. J., Vieno, M., Fournier, N., Weston, K. J., & Sutton, M. A. (2006). Development of a new wind rose for the British Isles using radiosonde data and application to an atmospheric transport model. Quarterly Journal of the Royal Meteorological Society, 132, 2769–2784.

    Article  Google Scholar 

  12. Dore, A. J., Vieno, M., Tang, Y. S., Dragosits, U., Dosio, A., Weston, K. J., et al. (2007). Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 41, 2355–2367. doi:10.1016/j.atmosenv.2006.11.013.

    Article  CAS  Google Scholar 

  13. Dore A.J., Kryza M., Hallsworth S., Matejko M., Hall M., Zhang Y., Bealey B., Vieno M., Tang S., Smith R., Dragosits U., Sutton M., (2009). Modelling the deposition and concentration of long range air pollutants, NERC/Centre for Ecology & Hydrology, p. 65. http://nora.nerc.ac.uk/9324/1/CO3021_Final_report_2009_10_09b.pdf.

  14. Dragosits, U., Sutton, M. A., Place, C. J., Bayley, A. A. (1998). Modelling the spatial distribution of agricultural ammonia emissions in the United Kingdom. Environmental Pollution, 102 (Supp/1), 195–203.

    Google Scholar 

  15. Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science and Technology, 6(3), 337–346.

    Article  CAS  Google Scholar 

  16. Fournier, N., Dore, A., Vieno, M., Weston, K., Dragosits, U., & Sutton, M. (2004). Modelling the deposition of atmospheric oxidized nitrogen and sulphur to the UK using a multi-layer long-range transport model. Atmospheric Environment, 38, 683–694.

    Article  CAS  Google Scholar 

  17. Gong, S. L. (2003). A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochemical Cycles, 17(4), 1097–1104. doi:10.1029/2003GB002079.

    Article  Google Scholar 

  18. Hernández-Soriano, M., Peña, A., & Mingorance, D. (2011). Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation. Journal of Environmental Monitoring, 13, 2830–2837. doi:10.1039/c1em10223k.

    Article  Google Scholar 

  19. Hoek, G., Meliefste, K., Cyrys, J., Lewn’e, M., Bellander, T., Brauer, M., & Brunekreef, B. (2002). Spatial variability of fine particle concentrations in three European areas. Atmospheric Environment, 36, 4077–4088.

    Article  CAS  Google Scholar 

  20. Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., & Vonmont, H. (2005). Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmospheric Environment, 39, 637–651.

    Article  CAS  Google Scholar 

  21. Kang, D., Mathur, R., Rao, S. T., Yu, S. (2008). Bias adjustment techniques for improving ozone air quality forecasts. Journal of Geophysic Research, 113 (D23308), doi: 10.1029/2008JD010151.

  22. Korcz, M., Fudala, J., & Klis, C. (2009). Estimation of wind blown dust emissions in Europe and its vicinity. Atmospheric Environment, 43, 1410–1420.

    Article  CAS  Google Scholar 

  23. Kryza, M. (2008). Application and validation of the residual kriging metod for interpolation of the monthly precipitation in Poland. Annual Geomatics, 4, 107–113.

    Google Scholar 

  24. Kryza, M., Matejko, M., Błaś, M., Dore, A., & Sobik, M. (2010). The effect of emission from coal combustion in non-industrial sources on deposition of sulphur and nitrogen oxides in Poland. Journal of Air and Waste Management Association, 60, 856–866. doi:10.3155/1047-3289.60.7.856.

    Article  CAS  Google Scholar 

  25. Kryza, M., Dore, A. J., Błaś, M., & Sobik, M. (2011). Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology. Journal of Environmental Management, 92, 1225–1236.

    Article  CAS  Google Scholar 

  26. Kryza, M., Werner, M., Dore, A. J., Błaś, M., & Sobik, M. (2012). The role of annual circulation and precipitation on national scale deposition of atmospheric sulphur and nitrogen compounds. Journal Of Environmental Management, 109, 70–79. doi:10.1016/j.jenvman.2012.04.048.

    Article  CAS  Google Scholar 

  27. Łobocki, L. (2003). Wskazówki metodyczne dotyczące modelowanie matematycznego w systemie zarządzania jakością powietrza (p. 59). Główny Inspektorat Ochrony Środowiska: Warszawa.

    Google Scholar 

  28. Matejko, M., Dore, A. J., Hall, J., Dore, C. J., Błaś, M., Kryza, M., et al. (2009). The influence of long term trends in pollutant emissions on deposition of sulphur and nitrogen and exceedance of critical loads in the United Kingdom. Environmental Science and Policy, 12, 882–896.

    Article  CAS  Google Scholar 

  29. Mc Keen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E. Y., Gong, W., Bouchet, V., Menard, S., Moffet, R., McHenry, J., McQueen, J., Tang, Y., Carmichael, G. R., Pagowski, M., Chan, A., Chan, A., Dye, T., Frost, G., Lee, P., Mathur, R. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysic Research, 110, doi: 10.1029/2005JDO05858.

  30. Monahan, E. C., Spiel, D. E., & Davidson, K. L. (1986). A model of marine aerosol generation via whitecaps and wave disruption. In E. C. Monahan & G. MacNiocaill (Eds.), Oceanic whitecaps and their role in air-sea exchange processes (pp. 167–174). Dordrecht: Reidel.

    Google Scholar 

  31. Monteiro, A., Ribeiro, I., Tchepel, O., Carvalho, A., Sá, E., Ferreira, J., Borrego, C. (2011). BIAS correction and ensemble techniques to improve air quality assessment: focus on O3 and PM over Portugal. In J. G. Bartzis, A. Syrakos, & S. Andronopoulos (Eds.), Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (pp. 22–27). Greece: Environmental Technology Laboratory, Department of Mechanical Engineering, University of West Macedonia.

  32. Nel, A. (2005). Air pollution-related illness: Effects of particles. Science, 308, 804–806.

    Article  CAS  Google Scholar 

  33. Nho-Kim, E. Y., Michou, M., & Peuch, V. (2004). Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmospheric Environment, 38, 1933–1942.

    Article  CAS  Google Scholar 

  34. Perez, N., Pey, J., Querol, X., Alastuey, A., Lopez, J. M., & Viana, M. (2008). Partitioning of major and trace components in PM10, PM2.5 and PM1 at an urban site in Southern Europe. Atmospheric Environment, 42, 1677–1691.

    Article  CAS  Google Scholar 

  35. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Ito, K. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287, 1132–1141. doi:10.1001/jama.287.9.1132.

    Article  CAS  Google Scholar 

  36. Pueschel, R. F. (1995). Atmospheric aerosol. Composition, chemistry, and climate of the atmosphere (pp. 120–175). New York: Van Nostrand Reinhold.

  37. Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., et al. (2004). A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2579–2595.

    Article  CAS  Google Scholar 

  38. Raghunath, R., Tripathi, R. M., Kumar, A. V., Sathe, A. P., Khandekar, R. N., & Nambi, K. S. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai. Environmental Research, 80(3), 215–221.

    Article  CAS  Google Scholar 

  39. Ruijgrok, W., Davidson, C. I., & Nicholson, K. W. (1995). Dry deposition of particles—implication and recommendations for mapping of deposition over Europe. Tellus, 47B, 587–601.

    Article  CAS  Google Scholar 

  40. Ruijgrok, W., Tieben, H., & Eisinga, P. (1997). The dry deposition of particles to a forest canopy: Comparison of model and experimental results. Atmospheric Environment, 31, 399–415.

    Article  Google Scholar 

  41. Ru-Zhong, L., Zhou, A.-J., Tong, F., Wu, Y.-D., Zhang, P., & Yu, J. (2011). Distribution of metals in urban dusts of Hefei and health risk assessment. Huan Jing Ke Xue, 32(9), 2661–2669.

    Google Scholar 

  42. Simpson, D., Gelencser, A., Caseiro, A., Klimont, Z., Kupiainen, K., Legrand, M., Yttr, K. (2007). Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL. Journal of Geophysical Research, 112, D23S14. doi: 10.1029/2006JD008158.

  43. Simpson, D., Benedictow, A., Berge, H., Bergstrom, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Ny’ıri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A’ ., and Wind, P. (2012). The EMEP MSC-W chemical transport model—technical description. Atmospheric Chemistry and Physics, 12, 7825–7865. doi:10.5194/acp-12- 7825–2012.

    Google Scholar 

  44. Singles, R. J., Sutton, M. A., & Weston, K. J. (1998). A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain. Atmospheric Environment, 32, 393–399.

    Article  CAS  Google Scholar 

  45. Smith, M. H., & Harrison, N. M. (1998). The sea spray generation function. Journal of Aerosol Science, 29, 189–190.

    Article  Google Scholar 

  46. Stedman, J. R., Kent, A. J., Grice, S. B., & Derwent, R. G. (2007). A consistent method for modelling PM10 and PM2.5 concentrations across the United Kingdom in 2004 for air quality assessment. Atmospheric Environment, 41, 161–172.

    Article  CAS  Google Scholar 

  47. Tsyro, S. (2005). To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5. Atmospheric Chemistry and Physics, 5, 515–532.

    Article  CAS  Google Scholar 

  48. Van Loon, G. W., Duffy, S. J. (2008). Chemia środowiska. (W. Boczoń, L. Wachowski, Tłumaczenie) Warszawa: Wydawnictwo Naukowe PWN.

  49. Vieno, M. (2005). The use of an Atmospheric Chemistry-Transport Model (FRAME) over the UK and development of its numerical and physical schemes. PhD thesis, University of Edinburgh.

  50. Vieno, M., Dore, A. J., Stevenson, D. S., Doherty, R., Heal, M., Reis, S., et al. (2010). Modelling surface ozone during the 2003 heat-wave in the UK. Atmospheric Chemistry and Physics, 10, 7963–7978. doi:10.5194/acp-10-7963-2010.

    Article  CAS  Google Scholar 

  51. Werner, M., Kryza, M., Dore, A. J., Błaś, M., Hallsworth, S., Vieno, M., et al. (2011). Modelling of marine base cation emissions, concentrations and deposition in the UK. Atmospheric Chemistry and Physics, 11, 1023–1037.

    Article  CAS  Google Scholar 

  52. Werner, M., Kryza, M., Dore, A. J., Hallsworth, S., & Błaś, M. (2012). Modelling emission, concentration and deposition of sodium for Poland. International Journal of Environment and Pollution, 50, 164–174.

    CAS  Google Scholar 

  53. Whall, C., Scarbrough, T., Stavrakaki, A., Green, C., Squire, J., Noden, R. (2010). UK Ship Emissions Inventory. Final Report. Entec UK Limited for Department of Environment, Food and Rural Affairs.

  54. Yin, J., Harrison, R. M., Chen, Q., Rutter, A., & Schauer, J. J. (2010). Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment, 44, 841–851.

    Article  CAS  Google Scholar 

  55. Yttri, K. E., Aas, W., Tørseth, K., Stebel, K., Tsyro, S., Simpson, D., Schroedter-Homscheidt, M. (2009). Transboundary particulate matter in Europe—status report 2009. Joint CCC, MSC-W, CEIP and CIAM Report

  56. Zhang, L., Gong, S., Padro, J., & Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35, 549–560.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department for the Environment, Food and Rural Affairs (DEFRA, UK) and The Polish National Science Centre (number UMO-2012/05/B/ST10/00446). Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant no. 170. The authors are grateful to David Simpson (EMEP) for provision of modelled data on organic aerosol concentrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, M., Kryza, M. & Dore, A.J. Differences in the Spatial Distribution and Chemical Composition of PM10 Between the UK and Poland. Environ Model Assess 19, 179–192 (2014). https://doi.org/10.1007/s10666-013-9384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9384-0

Keywords

Navigation