Advertisement

Environmental Modeling & Assessment

, Volume 18, Issue 3, pp 259–270 | Cite as

Some Dependence Models for the Time Between Ozone Exceedances in Mexico City

  • Jorge A. Achcar
  • Eliane R. Rodrigues
  • Edilberto Cepeda-Cuervo
Article

Abstract

In this paper, we consider several modelling approaches for the mean time between exceedances of a given environmental threshold. The interest here resides in the time between ozone exceedances (also called ozone inter-exceedances times). The proposed models assume two basic density functions for the time between surpassings: the Weibull and the generalised exponential functions. Considering those distributions, a random effect with autoregressive structure is taken into account to determine unexpected changes in the mean of the inter-exceedances density functions. Those unexpected changes could be captured either by their scale parameter or by both their scale and shape parameters. The models are applied to ozone data from the monitoring network of Mexico City. Selection of the model that best explains the data is performed using the deviance information criterion and also the sum of the absolute values of the differences between the estimated and observed means of the inter-exceedances times. An analysis to detect the possible presence of change-points is also presented.

Keywords

MCMC algorithms Bayesian inference Dependence models Inter-exceedances times Change-points Ozone air pollution Mexico city 

Notes

Acknowledgements

We thank an anonymous reviewer and the editor in chief for the constructive comments and suggestions that helped to improve the presentation of this work. The authors thank Guadalupe Tzintzun from the Instituto Nacional de Ecología of the Secretaría de Medio Ambiente y Recursos Naturales, Mexico, for providing the ozone data. ERR received financial support from the project PAPIIT-IN104110-3 of the Dirección General de Apoyo al Personal Académico of the Universidad Nacional Autónoma de México, Mexico. JAA was partially supported by the grant number 300235/2005-4 of the Conselho Nacional de Pesquisa, Brazil.

References

  1. 1.
    Achcar, J.A., Fernández-Bremauntz, A.A., Rodrigues, E.R., Tzintzun, G. (2008). Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model. Environmetrics, 19, 469–485.CrossRefGoogle Scholar
  2. 2.
    Achcar, J.A., Rodrigues, E.R., Paulino, C.D., Soares, P. (2010). Non-homogeneous Poisson models with a change-point: an application to ozone peaks in Mexico City. Environmental and Ecological Statistics, 17, 521–541. doi: 10.1007/s10651-009-01114-3.CrossRefGoogle Scholar
  3. 3.
    Achcar, J.A., Rodrigues, E.R., Tzintzun, G. (2011). Using non-homogeneous Poisson models with multiple change-points to estimate the number of ozone exceedances in Mexico City. Environmetrics, 22, 1–12. doi: 10.002/env.1029.CrossRefGoogle Scholar
  4. 4.
    Achcar, J.A., Rodrigues, E.R., Tzintzun, G. (2011). Modelling interoccurrence time between ozone peaks in Mexico City in the presence of multiple change-points. Brazilian Journal of Probability and Statistics, 25, 183–204.CrossRefGoogle Scholar
  5. 5.
    Achcar, J.A., Rodrigues, E.R., Tarumoto, M.H. (2011). Using counting processes to estimate the number of ozone exceedances: an application to the Mexico City measurements. In Proceedings of the 58th ISI world statistics congress, Dublin, 21–16 August 2011. http://isi2011.congressplanner.eu/CPS58-04.
  6. 6.
    Álvarez, L.J., Fernández-Bremauntz, A.A., Rodrigues, E.R., Tzintzun, G. (2005). Maximum a posteriori estimation of the daily ozone peaks in Mexico City. Journal of Agricultural, Biological, and Environmental Statistics, 10, 276–290.CrossRefGoogle Scholar
  7. 7.
    Austin, J., & Tran, H. (1999). A characterization of the weekday-weekend behavior of ambient ozone concentrations in California. In Air pollution VII (pp. 645–661). USA: WIT Press.Google Scholar
  8. 8.
    Bell, M.L, McDermontt, A., Zeger, S.L., Samet, J.M., Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. Journal of the American Medical Society, 292, 2372–2378. doi: 10.1001/jama.292.19.2372.Google Scholar
  9. 9.
    Bell, M.L., Peng, R., Dominici, F. (2005). The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environmental Health Perspectives, 114, 532–536.CrossRefGoogle Scholar
  10. 10.
    Bell, M.L., Goldberg, R., Rogrefe, C., Kinney, P.L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C., Patz, J.A. (2007). Climate change, ambient ozone, and health in 50 US cities. Climate Change, 82, 61–76.CrossRefGoogle Scholar
  11. 11.
    Davis, L.W. (2008). The effect of driving restrictions on air quality in Mexico City. Journal of Political Economy, 116, 39–81.Google Scholar
  12. 12.
    Flaum, J.B., Rao, S.T., Zurbenko, I.G. (1996). Moderating influence of meteorological conditions on ambient ozone concentrations. Journal of Air and Waste Management Association, 46, 33–46.CrossRefGoogle Scholar
  13. 13.
    Gauderman, W.J., Avol, E., Gililand, F., Vora, H., Thomas, D., Berhane, K., McConnel, R., Kuenzli, N., Lurmman, F., Rappaport, E. (2004). The effects of air pollution on lung development from 10 to 18 years of age. The New England Journal of Medicine, 351, 1057–1067.CrossRefGoogle Scholar
  14. 14.
    Horowitz, J. (1980). Extreme values from a nonstationary stochastic process: an application to air quality analysis. Technometrics, 22, 469–482.CrossRefGoogle Scholar
  15. 15.
    Huerta, G., & Sansó, B. (2007). Time-varying models for extreme values. Environmental and Ecological Statistics, 14, 285–299. doi: 10.1007/s10651-007-0014-3.CrossRefGoogle Scholar
  16. 16.
    Javits, J.S. (1980). Statistical interdependencies in the ozone national ambient air quality standard. Journal of Air Pollution Control Association, 30, 58–59.CrossRefGoogle Scholar
  17. 17.
    Lanfredi, M., & Macchiato, M. (1997). Searching for low dimensionality in air pollution time series. Europhysics Letter, 40, 589–594.CrossRefGoogle Scholar
  18. 18.
    Leadbetter, M.R. (1991). On a basis for “peak over threshold” modeling. Statistics and Probability Letters, 12, 357–362.CrossRefGoogle Scholar
  19. 19.
    Lippmann, M., & Schlesinger, R.B. (2000). Toxicological bases for the setting of health-related air pollution standard. Annual Review Public Health, 21, 309–333.CrossRefGoogle Scholar
  20. 20.
    Loomis, D., Borja-Arbuto, V.H., Bangdiwala, S.I., Shy, C.M. (1996). Ozone exposure and daily mortality in Mexico City: a time series analysis. Health Effects Institute Research Report, 75, 1–46.Google Scholar
  21. 21.
    McKinley, G., Zuk, M., Höjer, M., Avalos, M., Gonzaléz, I., Iniestra, R., Laguna, I., Martínez, M.A., Osnaya, P., Reynales, L.M., Valdés, R., Martínez, J. (2005). Quantification of local and global benefits from air pollution control in Mexico City. Environmental Science Technology, 39, 1954–1961.CrossRefGoogle Scholar
  22. 22.
    NOM (2002). Modificación a la Norma Oficial Mexicana NOM-020-SSA1-1993. Diario Oficial de la Federación, 30 de Octubre de 2002 (in Spanish)Google Scholar
  23. 23.
    O’Neill, M.R., Loomis, D., Borja-Aburto, V.H. (2004). Ozone, area social conditions and mortality in Mexico City. Environmental Research, 94, 234–242.CrossRefGoogle Scholar
  24. 24.
    Pan, J.N., & Chen, S.T. (2008). Monitoring long-memory air quality data using ARFIMA model. Environmetrics, 19, 209–219.CrossRefGoogle Scholar
  25. 25.
    Raftery, A.E. (1989). Are ozone exceedance rate decreasing? Comment of the paper “Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone” by R.L. Smith. Statistical Sciences, 4, 378–381.CrossRefGoogle Scholar
  26. 26.
    Roberts, E.M. (1979). Review of statistics of extreme values with applications to air quality data. Part I. Review. Journal of the Air Pollution Control Association, 29, 632–637.CrossRefGoogle Scholar
  27. 27.
    Roberts, E.M. (1979). Review of statistics of extreme values with applications to air quality data. Part II. Applications. Journal of the Air Pollution Control Association, 29, 733–740.CrossRefGoogle Scholar
  28. 28.
    Smith, R.L. (1989). Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statistical Sciences, 4, 367–393.CrossRefGoogle Scholar
  29. 29.
    Spiegelhalter, D.J., Thomas, A., Best, N.G., Gilks, W.R. (1999). WinBugs: Bayesian inference using gibbs sampling. Cambridge: MRC Biostatistics Unit.Google Scholar
  30. 30.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B, 64, 583–639.CrossRefGoogle Scholar
  31. 31.
    Zavala, M., Herndon, S.C., Wood, E.C., Onasch, T.B., Knighton, W.B., Marr, L.C., Kolb, C.E., Molina, L.T. (2009). Evaluation of mobile emissions contributions to Mexico City’s emissions inventory using on road and cross-road emission measurements and ambient data. Atmospheric Chemistry and Physics, 9, 6305–6317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jorge A. Achcar
    • 1
  • Eliane R. Rodrigues
    • 2
  • Edilberto Cepeda-Cuervo
    • 3
  1. 1.Departamento de Medicina Social, Faculdade de Medicina de Ribeirão PretoUSPRibeirão PretoBrazil
  2. 2.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Departamento de EstadísticaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations