Advertisement

Environmental Modeling & Assessment

, Volume 18, Issue 1, pp 57–72 | Cite as

Evaluating the Efficiency of a Uniform N-Input Tax under Different Policy Scenarios at Different Scales

  • Pierre-Alain Jayet
  • Athanasios Petsakos
Article

Abstract

Nitrate pollution from agriculture is an important environmental externality, caused by the excessive use of fertilizers. The internalization of this problem, via a tax on mineral nitrogen, could lead to a second best solution, reducing nitrate emissions. Several authors suggest that a reduction in agricultural support could produce similar results. In this paper, we examine the effects of different levels of a uniformly implemented nitrogen tax in France under two policy scenarios, corresponding to post Agenda 2000 and 2003 Luxembourg reforms of European Union’s Common Agricultural Policy, in order to reveal the synergies and conflicts between the tax and the policy scenarios in terms of nitrate emissions abatement. The analysis is performed at different geographical scales, from the national to the regional and is based on a bioeconomic approach that involves the coupling of the economic model AROPAj with the crop model STICS. Results show that the efficiency of the N-tax varies according to the geographical scale of the analysis and the type of farming. Furthermore, we prove that a uniform implementation may lead to perverse effects that should always be taken into account when introducing second-best instruments.

Keywords

Bioeconomic model Mathematical programming Nitrogen response curves Nitrate emissions Nitrogen tax 

Notes

Acknowledgments

This paper is based on research activities funded by the PIREN-Seine, an interdisciplinary research program dedicated to the study of the environment in the Seine river basin in France.

References

  1. 1.
    Hanley, N. (1990). The economics of nitrate pollution. European Review of Agricultural Economics, 17, 129–151.CrossRefGoogle Scholar
  2. 2.
    Baumol, W. J., & Oates, W. E. (1971). The use of standards and prices for protection of the environment. The Swedish Journal of Economics, 73(1), 42–54.CrossRefGoogle Scholar
  3. 3.
    Abrams, L. W., & Barr, J. L. (1974). Corrective taxes for pollution control. An application of the environmental pricing ond standards systems to agriculture. Journal of Environmental Economics and Management, 1, 296–318.CrossRefGoogle Scholar
  4. 4.
    Tietenberg, T. H. (1973). Controlling pollution by price and standard systems: a general equilibrium analysis. The Swedish Journal of Economics, 75(2), 193–203.CrossRefGoogle Scholar
  5. 5.
    Griffin, R. C., & Bromley, D. W. (1982). Agricultural runoff as a nonpoint externality: a theoretical development. American Journal of Agricultural Economics, 64(3), 547–552.CrossRefGoogle Scholar
  6. 6.
    Shortle, J. S., & Dunn, J. W. (1986). The relative efficiency of agricultural source water pollution control policies. American Journal of Agricultural Economics, 68(3), 668–677.CrossRefGoogle Scholar
  7. 7.
    Segerson, K. (1988). Uncertainty and incentives for nonpoint pollution control. Journal of Environmental Economics and Management, 15(1), 87–98.CrossRefGoogle Scholar
  8. 8.
    Xepapadeas, A. P. (1991). Environmental policy under imperfect information: Incentives and moral hazard. Journal of Environmental Economics and Management, 20(2), 113–126.CrossRefGoogle Scholar
  9. 9.
    Cabe, R., & Herriges, J. A. (1992). The regulation of non-point-source pollution under imperfect and asymmetric information. Journal of Environmental Economics and Management, 22(2), 134–146.CrossRefGoogle Scholar
  10. 10.
    Shortle, J. S., Horan, R. D., & Abler, D. G. (1998). Research issues in nonpoint pollution control. Environmental and Resource Economics, 11(3–4), 571–585.CrossRefGoogle Scholar
  11. 11.
    Helfand, G. E., Berck, P., & Maull, T. (2003). The theory of pollution policy. In K. G. Mäler & J. R. Vincent (Eds.), Environmental degradation and institutional responses (handbook of environmental economics, vol. 1) (pp. 249–303). Amsterdam: Elsevier.CrossRefGoogle Scholar
  12. 12.
    Claassen, R., & Horan, R. D. (2001). Uniform and non-uniform second-best input taxes. Environmental and Resource Economics, 19, 1–22.CrossRefGoogle Scholar
  13. 13.
    Helfand, G. E., & House, B. W. (1995). Regulating nonpoint source pollution under heterogeneous conditions. American Journal of Agricultural Economics, 77(4), 1024–1032.CrossRefGoogle Scholar
  14. 14.
    Martínez, Y., & Albiac, J. (2006). Nitrate pollution control under soil heterogeneity. Land Use Policy, 23(4), 521–532.CrossRefGoogle Scholar
  15. 15.
    Gallego-Ayala, J., & Gómez-Limón, J. A. (2009). Analysis of policy instruments for control of nitrate pollution in irrigated agriculture in Castilla y León, Spain. Spanish Journal of Agricultural Research, 27(1), 24–40.Google Scholar
  16. 16.
    Semaan, J., Flichman, G., Scardigno, A., & Steduto, P. (2007). Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): a bio-economic modelling approach. Agricultural Systems, 94(2), 357–367.CrossRefGoogle Scholar
  17. 17.
    Taylor, M. L., Adams, R. M., & Miller, S. F. (1992). Farm-level response to agricultural effluent control strategies: the case of the Willamette Valley. Journal of Agricultural and Resource Economics, 17(1), 173–185.Google Scholar
  18. 18.
    Wu, J., & Babcock, B. A. (2001). Spatial heterogeneity and the choice of instruments to control nonpoint pollution. Environmental and Resource Economics, 18, 173–192.CrossRefGoogle Scholar
  19. 19.
    Cochard, F., Willinger, M., & Xepapadeas, A. (2005). Efficiency of nonpoint source pollution instruments: an experimental study. Environmental and Resource Economics, 30, 393–422.CrossRefGoogle Scholar
  20. 20.
    Spraggon, J. (2002). Exogeneous targeting instruments as a solution to group moral hazards. Journal of Public Economics, 84, 427–456.CrossRefGoogle Scholar
  21. 21.
    Abler, D. G., & Shortle, J. S. (1992). Environmental and farm commodity policy linkages in the US and the EC. European Review of Agricultural Economics, 19, 197–217.CrossRefGoogle Scholar
  22. 22.
    De Haen, H. (1982). Economic aspects of policies to control nitrate contamination resulting from agricultural production. European Review of Agricultural Economics, 9, 443–465.CrossRefGoogle Scholar
  23. 23.
    Wier, M., Andersen, J. M., Jensen, J. D., & Jensen, T. C. (2002). The EU’s Agenda 2000 reform for the agricultural sector: environmental and economic effects in Denmark. Ecological Economics, 41(2), 345–359.CrossRefGoogle Scholar
  24. 24.
    Schmid, E., Sinabell, F., & Hofreither, M. F. (2007). Phasing out of environmentally harmful subsidies: consequences of the 2003 CAP reform. Ecological Economics, 60(3), 596–604.CrossRefGoogle Scholar
  25. 25.
    Mosnier, C., Ridier, A., Kphaliacos, C., & Carpy-Goulard, F. (2009). Economic and environmental impact of the CAP mid-term review on arable crop farming in South-western France. Ecological Economics, 68(5), 1408–1416.CrossRefGoogle Scholar
  26. 26.
    Johnson, S. L., Adams, R. M., & Perry, G. M. (1991). The on-farm costs of reducing groundwater pollution. American Journal of Agricultural Economics, 73(4), 1063–1073.CrossRefGoogle Scholar
  27. 27.
    >Rougoor, C. W., Van Zeijts, H., Hofreither, M. F., & Bäckman, S. (2001). Experiences with fertilizer taxes in Europe. Journal of Environmental Planning and Management, 44(6), 877–887.CrossRefGoogle Scholar
  28. 28.
    Janssen, S., & Van Ittersum, M. K. (2007). Assessing farm innovations and responses to policies: a review of bio-economic farm models. Agricultural Systems, 94(3), 622–636.CrossRefGoogle Scholar
  29. 29.
    Larson, D. M., Helfand, G. E., & House, B. W. (1996). Second-best tax policies to reduce nonpoint source pollution. American Journal of Agricultural Economics, 78(4), 1108–1117.CrossRefGoogle Scholar
  30. 30.
    Galko, E., & Jayet, P. A. (2011). Economic and environmental effects of decoupled agricultural support in the EU. Agricultural Economics, 42, 605–618.CrossRefGoogle Scholar
  31. 31.
    Chakir, R., Debove, E., De Cara, S., & Jayet, P. A. (2006). The AROPAj model. Work Package 2, Deliverable 2, GENEDEC Project. http://www.grignon.inra.fr/economiepublique/genedec/publi/deliv/WP2_D2_TR.doc. Accessed 9 August 2010.
  32. 32.
    De Cara, S., Houzé, M., & Jayet, P. A. (2005). Methane and nitrous oxide emissions from agriculture in the EU: a spatial assessment of sources and abatement costs. Environmental and Resource Economics, 32, 551–583.CrossRefGoogle Scholar
  33. 33.
    De Cara, S., & Jayet, P. A. (2000). Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France. European Review of Agricultural Economics, 27(3), 281–303.CrossRefGoogle Scholar
  34. 34.
    Brisson, N., Gary, C., Roche, R., Mary, B., Ripoche, D., Zimmer, D., et al. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18, 309–332.CrossRefGoogle Scholar
  35. 35.
    Godard, C., Roger-Estrade, J., Jayet, P. A., Brisson, N., & Le Bas, C. (2008). Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agricultural Systems, 97(1–2), 68–82.CrossRefGoogle Scholar
  36. 36.
    Llewelyn, R. V., & Featherstone, A. M. (1997). A comparison of crop production functions using simulated data for irrigated corn in Western Kansas. Agricultural Systems, 54(4), 521–538.CrossRefGoogle Scholar
  37. 37.
    Frank, M. D., Beattie, B. R., & Embletton, M. E. (1990). A comparison of alternative crop response models. American Journal of Agricultural Economics, 72(3), 597–603.CrossRefGoogle Scholar
  38. 38.
    Schott, C., Mignolet, C., & Benoît, M. (2009). Agriculture du bassin de la Seine. Programme PIREN-SEINE No.5, Agence de l' eau Seine-Normandie. http://www.sisyphe.upmc.fr/piren/fascicules. Accessed 28 July 2010.
  39. 39.
    Viennot, P., Ledoux, E., Monget, J. M., Schott, C., Gernier, C., & Beaudoin, N. (2009). La pollution du bassin de la Seine par les nitrates. Programme PIREN-SEINE No.3, Agence de l' eau Seine-Normandie. http://www.sisyphe.upmc.fr/piren/fascicules. Accessed 28 July 2010.
  40. 40.
    Berntsen, J., Petersen, B. M., Jacobsen, B. H., Olesen, J. E., & Hutchings, N. J. (2003). Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems, 76(3), 817–839.CrossRefGoogle Scholar
  41. 41.
    Schou, J. S., Skop, E., & Jensen, J. D. (2000). Integrated agri-environmental modelling: a cost-effectiveness analysis of two nitrogen tax instruments in the Vejle Fjord watershed, Denmark. Journal of Environmental Management, 58(3), 199–212.CrossRefGoogle Scholar
  42. 42.
    Goetz, R. U., Schmid, H., & Lehmann, B. (2006). Determining the economic gains from regulation at the extensive and intensive margins. European Review of Agricultural Economics, 33(1), 1–30.CrossRefGoogle Scholar
  43. 43.
    Horner, G. L. (1975). Internalizing agricultural nitrogen pollution externalities: a case study. American Journal of Agricultural Economics, 57(1), 33–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.UMR 210 INRA—AgroParisTech Economie PubliqueCentre de recherche de Versailles-GrignonThiverval-GrignonFrance
  2. 2.Department of Agricultural Economics and Rural DevelopmentAgricultural University of AthensAthensGreece

Personalised recommendations