Advertisement

Environmental Modeling & Assessment

, Volume 18, Issue 1, pp 27–37 | Cite as

Marginal Abatement Cost Curves: Combining Energy System Modelling and Decomposition Analysis

  • Fabian KesickiEmail author
Article

Abstract

Marginal abatement cost (MAC) curves are a useful policy tool to communicate findings on the technological structure and the economics of CO2 emissions reduction. However, existing ways of generating MAC curves do not display consistent technological detail and do not consider system-wide interactions and uncertainty in a structured manner. This paper details a new approach to overcome the present shortcomings by using an energy system model, UK MARKAL, in combination with index decomposition analysis. In addition, this approach allows different forms of uncertainty analysis to be used in order to test the robustness of the MAC curve. For illustration purposes, a sensitivity analysis concerning fossil fuel prices is applied to the transport sector of the UK. The resulting MAC curves are found to be relatively robust to different fuel costs at higher CO2 tax levels. The new systems-based approach improves MAC curves through the avoidance of an inconsistent emissions baseline, the incorporation of system-wide interactions and the price responsiveness of demand.

Keywords

Marginal abatement cost curve CO2 emissions Emissions reduction Interactions 

Notes

Acknowledgments

The author gratefully acknowledges the support of a German Academic Exchange Service (DAAD) scholarship and would like to thank two anonymous reviewers who helped to improve the article.

References

  1. 1.
    Committee on Climate Change. (2008). Building a low-carbon economy—the UK’s contribution to tackling climate change. London: Committee on Climate Change.Google Scholar
  2. 2.
    Carmel, A. (2008). Paying for mitigation—the GLOCAF model. Bali: Paper presented at the United Nations Framework Convention on Climate Change COP 13.Google Scholar
  3. 3.
    HM Government. Department of Trade and Industry. (2007). Meeting the energy challenge: a white paper on energy. London: Stationery Office.Google Scholar
  4. 4.
    HM Government (2009). Analytical annex—the UK low carbon transition plan. London: HM Government.Google Scholar
  5. 5.
    Blok, K., Worrell, E., Cuelenaere, R., & Turkenburg, W. (1993). The cost effectiveness of CO2 emission reduction achieved by energy conservation. Energy Policy, 21(6), 656–667. doi: 10.1016/0301-4215(93)90289-R.CrossRefGoogle Scholar
  6. 6.
    Kennedy, M. (2010). Ireland’s future: a low carbon economy? The impact of green stimulus investment. Vilnius: IAEE European Conference.Google Scholar
  7. 7.
    Kiuila, O., & Rutherford, T. F. (2010). Abatement options and climate policy choices. Stockholm: International Energy Workshop.Google Scholar
  8. 8.
    Poswiata, J., & Bogdan, W. (2009). Assessment of greenhouse gas emissions abatement potential in Poland by 2030. Warsaw: McKinsey.Google Scholar
  9. 9.
    Sweeney, J., Weyant, J., Chan, T. T., Chowdhary, R., Gillingham, K., Guy, A., et al. (2008). Analysis of Measures to Meet the Requirements of California’s Assembly Bill 32. Stanford: Precourt Institute for Energy Efficiency, Standford University.Google Scholar
  10. 10.
    Grubb, M., Edmonds, J., ten Brick, P., & Morrison, M. (1993). The costs of limiting fossil–fuel CO2 emissions: a survey and analysis. Annual Review of Energy and the Environment, 18, 397–478.CrossRefGoogle Scholar
  11. 11.
    Nauclér, T., & Enkvist, P. A. (2009). Pathways to a low-carbon economy—version 2 of the global greenhouse gas abatement cost curve. In McKinsey & Company (Ed.).Google Scholar
  12. 12.
    Kesicki, F., & Ekins, P. (2012). Marginal abatement cost curves: a call for caution. Climate Policy, 12, 219–236.CrossRefGoogle Scholar
  13. 13.
    McKitrick, R. (1999). A derivation of the marginal abatement cost curve. Journal of Environmental Economics and Management, 37(3), 306–314.CrossRefGoogle Scholar
  14. 14.
    Klepper, G., & Peterson, S. (2006). Marginal abatement cost curves in general equilibrium: the influence of world energy prices. Resource and Energy Economics, 28(1), 1–23.CrossRefGoogle Scholar
  15. 15.
    Morris, J., Paltsev, S., & Reilly, J. (2012). Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions: results from the EPPA model. Environmental Modeling and Assessment. doi: 10.1007/s10666-011-9298-7.
  16. 16.
    Hourcade, J.-C., Halsnaes, K., Jaccard, M., Montgomery, W. D., Richels, R., Robinson, J., et al. (1995). A review of mitigation cost studies. In J. J. Houghton, L. G. Meiro Filho, B. A. Callander, N. Harris, A. Kattenberg, & K. Maskell (Eds.), Climate change 1995: contribution of Working Group III to the Second Assessment of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  17. 17.
    Ellerman, A. D., & Decaux, A. (1998). Analysis of post-Kyoto CO 2 emissions trading using marginal abatement curves. Cambridge: Massachusetts Institute of Technology.Google Scholar
  18. 18.
    van Vuuren, D. P., de Vries, B., Eickhout, B., & Kram, T. (2004). Responses to technology and taxes in a simulated world. Energy Economics, 26(4), 579–601.CrossRefGoogle Scholar
  19. 19.
    Blok, K., de Jager, D., Hendriks, C., Kouvaritakis, N., & Mantzos, L. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change — Comparison of ‘Top-down’ and ‘Bottom-up’. In DG Environment European Commission (Ed.), Analysis of Emission Reduction Opportunities for CO 2 in European Union. Brussels: Ecofys Energy and Environment, National Technical University of Athens.Google Scholar
  20. 20.
    Kesicki, F. (2010). Marginal abatement cost curves for policy making—expert-based vs. model-derived curves. Rio de Janeiro: Paper presented at the IAEE’s 2010 International Conference.Google Scholar
  21. 21.
    Stoft, S. (1995). The economics of conserved-energy ‘supply’ curves. Energy Journal, 16(4), 109–140.Google Scholar
  22. 22.
    Loulou, R., Goldstein, G., & Noble, K. (2004). Documentation for the MARKAL family of models. Energy Technology Systems Analysis Programme.Google Scholar
  23. 23.
    Kannan, R. (2009). Uncertainties in key low carbon power generation technologies—implication for UK decarbonisation targets. Applied Energy, 86(10), 1873–1886. doi: 10.1016/j.apenergy.2009.02.014.CrossRefGoogle Scholar
  24. 24.
    Strachan, N., Pye, S., & Kannan, R. (2009). The iterative contribution and relevance of modelling to UK energy policy. Energy Policy, 37(3), 850–860. doi: 10.1016/j.enpol.2008.09.096.CrossRefGoogle Scholar
  25. 25.
    Anandarajah, G., & Strachan, N. (2010). Interactions and implications of renewable and climate change policy on UK energy scenarios. Energy Policy, 38(11), 6724–6735. doi: 10.1016/j.enpol.2010.06.042.CrossRefGoogle Scholar
  26. 26.
    Strachan, N., Kannan, R., & Pye, S. (2008). Scenarios and sensitivities on long-term UK carbon reductions using the UK MARKAL and MARKAL-macro energy system models. London: UKERC.Google Scholar
  27. 27.
    Kannan, R., Strachan, N., Balta-Ozkan, N., & Pye, S. (2007). UK MARKAL model documentation. www.ukerc.ac.uk. Accessed 18 Nov 2010.
  28. 28.
    Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRefGoogle Scholar
  29. 29.
    Diakoulaki, D., Mavrotas, G., Orkopoulos, D., & Papayannakis, L. (2006). A bottom-up decomposition analysis of energy-related CO2 emissions in Greece. Energy, 31(14), 2638–2651.CrossRefGoogle Scholar
  30. 30.
    Shrestha, R. M., Anandarajah, G., & Liyanage, M. H. (2009). Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific. Energy Policy, 37(6), 2375–2384.CrossRefGoogle Scholar
  31. 31.
    Ang, B. W. (2004). Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 32(9), 1131–1139.CrossRefGoogle Scholar
  32. 32.
    Divisia, F. (1925). L’indice monétaire et la théorie de la monnaie. Revue d’économie politique, 39(5), 980–1008.Google Scholar
  33. 33.
    Vartia, Y. (1976). Ideal log-change index numbers. Scandinavian Journal of Statistics, 3(3), 121–126.Google Scholar
  34. 34.
    Montgomery, J. K. (1937). The mathematical problem of the price index. London: King.Google Scholar
  35. 35.
    Ang, B. W., Zhang, F. Q., & Choi, K.-H. (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6), 489–495.CrossRefGoogle Scholar
  36. 36.
    Ang, B. W., & Liu, N. (2007). Energy decomposition analysis: IEA model versus other models. Energy Policy, 35(3), 1426–1432.CrossRefGoogle Scholar
  37. 37.
    Department of Energy and Climate Change (2010). Provisional 2009 results for UK greenhouse gas emissions and progress towards targets. London.Google Scholar
  38. 38.
    Kesicki, F. (2012). Intertemporal issues and marginal abatement costs in the UK transport sector. Transportation Research Part D: Transport and Environment, 17(5), 418–426.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.UCL Energy InstituteUniversity College LondonLondonUK

Personalised recommendations