Environmental Modeling & Assessment

, Volume 17, Issue 6, pp 577–587 | Cite as

Assessing the Relative Importance of Spatial Variability in Emissions Versus Landscape Properties in Fate Models for Environmental Exposure Assessment of Chemicals

  • A. Hollander
  • M. Hauck
  • I. T. Cousins
  • M. A. J. Huijbregts
  • A. Pistocchi
  • A. M. J. Ragas
  • D. van de Meent


Multimedia mass balance models differ in their treatment of spatial resolution from single boxes representing an entire region to multiple interconnected boxes with varying landscape properties and emission intensities. Here, model experiments were conducted to determine the relative importance of these two main factors that cause spatial variation in environmental chemical concentrations: spatial patterns in emission intensities and spatial differences in environmental conditions. In the model, experiments emissions were always to the air compartment. It was concluded that variation in emissions is in most cases the dominant source of variation in environmental concentrations. It was found, however, that variability in environmental conditions can strongly influence predicted concentrations in some cases, if the receptor compartments of interest are soil or water—for water concentrations particularly if a chemical has a high octanol–air partition coefficient (K oa). This information will help to determine the required level of spatial detail that suffices for a specific regulatory purpose.


Multimedia fate model Spatial concentration variation Model resolution Emissions POP SimpleBox 



This work was funded by the Integrated European Research Project, NoMiracle (NOvel Methods for Integrated Risk Assessment of CumuLative stressors in Europe) through the European Commission’s Sixth Framework Programme (FP6 Contracts no. 003956).


  1. 1.
    Mackay, D. (1979). Finding fugacity feasible. Environmental Science & Technology, 13, 1218–1223.CrossRefGoogle Scholar
  2. 2.
    Mackay, D., & Paterson, S. (1981). Calculating fugacity. Environmental Science and Technology, 15, 1006–1014.CrossRefGoogle Scholar
  3. 3.
    Mackay, D., Paterson, S., Cheung, B., & Nealy, W. (1985). Evaluating the environmental behavior of chemicals with a level III fugacity model. Chemosphere, 14, 335–375.CrossRefGoogle Scholar
  4. 4.
    Wegmann, F., Cavin, L., MacLeod, M., Scheringer, M., & Hungerbühler, K. (2009). The OECD software tool for screening chemicals for persistence and long-range transport potential. Environmental Modelling and Software, 24, 228–237.CrossRefGoogle Scholar
  5. 5.
    Den Hollander, H.A., Van Eijkeren, J.C.H. & Van de Meent D. (2004). SimpleBox 3.0: multimedia mass balance model for evaluating the fate of chemicals in the environment. Report # 601200003. Bilthoven, National Institute for Public Health and the Environment (RIVM).Google Scholar
  6. 6.
    McKone, T. E. (1993). CalTOX, a multimedia total-exposure model for hazardous waste sites. Part 1: executive summary. Livermore: Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
  7. 7.
    Wania, F., & Mackay, D. (1995). A global distribution model for persistent organic chemicals. The Science of the Total Environment, 160(161), 211–232.CrossRefGoogle Scholar
  8. 8.
    Wania, F. (1996). Spatial variability in compartmental fate modeling. Linking fugacity models and GIS. Environmental Science and Pollution Research, 3, 39–46.CrossRefGoogle Scholar
  9. 9.
    Woodfine, D. G., MacLeod, M., Mackay, D., & Brimacombe, J. R. (2001). Development of continental scale multimedia contaminant models: integrating GIS. Environmental Science and Pollution Research, 8, 164–172.CrossRefGoogle Scholar
  10. 10.
    Pennington, D. W., Margni, M., Ammann, C., & Jolliet, O. (2005). Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. Environmental Science and Technology, 39, 1119–1128.CrossRefGoogle Scholar
  11. 11.
    Prevedouros, K., MacLeod, M., Jones, K. C., & Sweetman, A. C. (2004). Modelling the fate of persistent organic pollutants in Europe: parameterization of a gridded distribution model. Environmental Pollution, 128, 251–261.CrossRefGoogle Scholar
  12. 12.
    Toose, L., Woodfine, D. G., MacLeod, M., Mackay, D., & Gouin, T. (2004). BETR-world: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic. Environmental Pollution, 128, 223–240.CrossRefGoogle Scholar
  13. 13.
    MacLeod, M., Riley, W. J., & McKone, T. E. (2005). Assessing the influence of climate variability on atmospheric concentrations of polychlorinated biphenyls using a global scale mass balance model (BETR-Global). Environmental Science and Technology, 39, 6749–6756.CrossRefGoogle Scholar
  14. 14.
    Suzuki, N., Murasuwa, K., Sakurai, T., Nansai, K., Matsuhashi, K., Moriguchi, Y., Tanabe, K., Nakasugi, O., & Morita, M. (2005). Georeferenced multimedia environmental fate model (G-CIEMS): model formulation and comparison to the generic model and monitoring approaches. Environmental Science and Technology, 38, 5682–5693.CrossRefGoogle Scholar
  15. 15.
    Gusev, A., Mantseva, E., Shatalov, V., & Strukov, B. (2005). Regional multicompartment model MSCE-POP. Technical Report 5/2005. Moscow: EMEP.Google Scholar
  16. 16.
    Lammel, G., Feichter, J. & Leip A. (2001). Long-range transport and global distribution of semivolatile organic compounds: a case study on two modern agrochemicals. Report #324, Hamburg, Max Planck Institute for Meteorology.Google Scholar
  17. 17.
    Schaap, M., Roemer, M., Sauter, F., Boersen, G., Timmermans, R., & Builtjes, P. J. H. (2005). LOTOS-EUROS: documentation. Report # B&O-A R2005/297. Apeldoorn: TNO.Google Scholar
  18. 18.
    Hollander, A., Huijbregts, M. A. J., Ragas, A. M. J., & Van de Meent, D. (2006). BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments. Hydrobiologia, 565, 18–32.CrossRefGoogle Scholar
  19. 19.
    Pistocchi, A. (2008). A GIS-based approach for modeling the fate and transport of pollutants in Europe. Environmental Science and Technology, 42, 3640–3647.CrossRefGoogle Scholar
  20. 20.
    Woodbury, P. B. (2004). Dos and don’ts of spatially explicit ecological risk assessments. Environmental Toxicology and Chemistry, 22, 977–982.CrossRefGoogle Scholar
  21. 21.
    Mackay, D., Di Guardo, A., Hickie, B., & Webster, E. (1997). Environmental modeling: progress and prospects. SAR and QSAR in Environmental Research, 6, 1–17.CrossRefGoogle Scholar
  22. 22.
    OECD (2004). Guidance document on the use of multimedia models for estimating overall environmental persistence and long-range transport. OECD series on testing and assessment # 45, ENV/JM/MONO(2004)5.Google Scholar
  23. 23.
    Warren, C. S., Mackay, D., Webster, E., & Arnot, J. A. (2009). A cautionary note on implications of the well-mixed compartment. Assumption as applied to mass balance models of chemical fate in flowing systems. Environmental Toxicology and Chemistry, 28, 1858–1865.CrossRefGoogle Scholar
  24. 24.
    Hollander, A. (2008). Spatial variation in multimedia mass balance models. Thesis. Nijmegen, Radboud University Nijmegen.Google Scholar
  25. 25.
    UNEP; United Nations Environmental Programme (2001). Stockholm Convention on persistent organic pollutants (POPs)—text and annexes. Geneva, UNEP/Chemicals/2001/3 2001.Google Scholar
  26. 26.
    UNECE; United Nations Economic Commission for Europe (1979). Convention on long-range transboundary air pollution and its protocols (CLRTAP). New York, ECE/EB.AIR/50 1996.Google Scholar
  27. 27.
    UNECE; United Nations Economic Commission for Europe (1998). Protocol of the 1979 Convention on long-range transboundary ari pollution and its protocols (CLRTAP). Geneva/New York, ECE/EB.AIR/60.Google Scholar
  28. 28.
    Denier-Van der Gon, H., Van het Bolscher, M., Visschedijk, A., & Zandveld, P. (2007). Emissions of persistent organic pollutants and eight candidate POPs for UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmospheric Environment, 41, 9245–9261.CrossRefGoogle Scholar
  29. 29.
    EMEP (2008). http://www.emep.int/grid/griddescr.html. Accessed 1 December 2008.
  30. 30.
    US-EPA (2010). EPI Suite™ v4.0. http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm
  31. 31.
    Pistocchi, A., Vizcaino, M. P., & Pennington, D. W. (2006). Analysis of landscape and climate parameters for continental scale assessment of the fate of pollutants. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  32. 32.
    Hollander, A., Pistocchi, A., Huijbregts, M. A. J., Ragas, A. M. J., & Van de Meent, D. (2009). Substance or space? The relative importance of substance properties and environmental characteristics in modeling the fate of chemicals in Europe. Environmental Toxicology and Chemistry, 28, 44–51.CrossRefGoogle Scholar
  33. 33.
    Hauck, M., Huijbregts, M., Hollander, A., Hendriks, A. J., & Van de Meent, D. (2010). Modeled and monitored variation in space and time of PCB153 concentrations in air, sediment, soil and aquatic biota on a European scale. Science of the Total Environment, 408, 3831–3839.CrossRefGoogle Scholar
  34. 34.
    Hollander, A., Sauter, F., Den Hollander, H. A., Huijbregts, M. A. J., Ragas, A. M. J., & Van de Meent, D. (2007). Spatial variance in multimedia mass balance models: Comparison of LOTOS–EUROS and SimpleBox for PCB-153. Chemosphere, 68, 1318–1326.CrossRefGoogle Scholar
  35. 35.
    Bennett, D. H., Kastenberg, W. E., & McKone, T. E. (1999). A multimedia, multiple pathway risk assessment of atrazine: The impact of age differentiated exposure including joint uncertainty and variability. Reliability Engineering and System Safety, 63, 185–198.CrossRefGoogle Scholar
  36. 36.
    Sweetman, A., Cousins, I. T., Seth, R., Jones, K. C., & Mackay, D. (2002). A dynamic level IV multimedia environmental model: application to the fate of polychlorinated biphenyls in the United Kingdom over a 60-year period. Environmental Toxicology and Chemistry, 21, 930–940.CrossRefGoogle Scholar
  37. 37.
    Hauck, M., Huijbregts, M. A. J., Armitage, J. M., Cousins, I. T., Ragas, A. M. J., & Van de Meent, D. (2008). Model and input uncertainty in multimedia fate modeling: Benzo[a]pyrene concentrations in Europe. Chemosphere, 72, 959–967.CrossRefGoogle Scholar
  38. 38.
    Pistocchi, A., Sarigiannis, D. A., & Vizcaino, P. (2010). Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Science of the Total Environment, 408, 3817–3830.CrossRefGoogle Scholar
  39. 39.
    Prevedouros, K., Jones, K. C., & Sweetman, A. J. (2004). European-scale modeling of concentrations and distribution of polybrominated diphenyl ethers in the pentabromodiphenyl ether product. Environmental Science and Technology, 38, 5993–6001.CrossRefGoogle Scholar
  40. 40.
    Hertwich, E. G., McKone, T. E., & Pease, W. S. (1999). Parameter uncertainty and variability in evaluative fate and exposure models. Risk Analysis, 19, 1193–1204.Google Scholar
  41. 41.
    Webster, E., Mackay, D., Di Guardo, A., Kane, D., & Woodfine, D. (2004). Regional differences in chemical fate model outcome. Chemosphere, 55, 1361–1376.CrossRefGoogle Scholar
  42. 42.
    MacLeod, M., Fraser, A., & Mackay, D. (2002). Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environmental Toxicology and Chemistry, 21, 700–709.CrossRefGoogle Scholar
  43. 43.
    Armitage, J. M., Cousins, I. T., Hauck, M., Harbers, J. V., & Huijbregts, M. A. J. (2007). Empirical evaluation of spatial and non-spatial European-scale multimedia fate models: results and implications for chemical risk assessment. Journal of Environmental Monitoring, 9, 572–581.CrossRefGoogle Scholar
  44. 44.
    Berding, V., & Matthies, M. (2002). European scenarios for EUSES regional distribution model. Environmental Science and Pollution Research, 9, 193–198.CrossRefGoogle Scholar
  45. 45.
    Hertwich, E. G., McKone, T. E., & Pease, W. S. (1999). A systematic uncertainty analysis of an evaluative fate and exposure model. Risk Analysis, 4, 439–454.Google Scholar
  46. 46.
    Maddalena, R. L., McKone, T. E., Hshieh, D. P. H., & Geng, S. (2001). Influential input classification in probabilistic multimedia models. Stochastic Environmental Research and Risk Assessment, 15, 1–17.CrossRefGoogle Scholar
  47. 47.
    Hauck, M., Huijbregts, M. A. J., Koelmans, A. A., Moermond, C. T. A., Van den Heuvel-Greve, M. J., Veltman, K., Hendriks, A. J., & Vethaak, A. D. (2007). Including sorption to black carbon in modeling bioaccumulation of polycyclic aromatic hydrocarbons: Uncertainty analysis and comparison to field data. Environmental Science and Technology, 41, 2738–2744.CrossRefGoogle Scholar
  48. 48.
    Huijbregts, M. A. J., Thissen, U., Jager, T., Van de Meent, D., & Ragas, A. M. J. (2000). Priority assessment of toxic substances in life-cycle assessment. Part II: assessing parameter uncertainty and human variability in the calculation of toxicity potentials. Chemosphere, 41, 575–588.CrossRefGoogle Scholar
  49. 49.
    Mackay, D. (2001). Multimedia environmental models: The fugacity approach. Chelsea: Lewis Publishers.CrossRefGoogle Scholar
  50. 50.
    Pistocchi, A. (2008). An assessment of soil erosion and freshwater suspended solid estimates for continental-scale environmental modeling. Hydrological Processes, 22, 2292–2314.CrossRefGoogle Scholar
  51. 51.
    Cahill, T. M., & Mackay, D. (2003). Complexity in multimedia mass balance models: when are simple models adequate and when are more complex models necessary? Environmental Toxicology and Chemistry, 22, 1404–1412.CrossRefGoogle Scholar
  52. 52.
    Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G., Cowan, C. E., & Kane, D. M. (1996). Assessment of chemical fate in the environment using evaluative, regional and local-scale models: Illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environmental Toxicology and Chemistry, 15, 1638–1648.CrossRefGoogle Scholar
  53. 53.
    Aronson, D., Boethling, R., Howard, P., & Stiteler, W. (2006). Estimating biodegradation half-lives for use in chemical screening. Chemosphere, 63, 1953–1960.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Hollander
    • 1
  • M. Hauck
    • 1
  • I. T. Cousins
    • 2
  • M. A. J. Huijbregts
    • 1
  • A. Pistocchi
    • 3
  • A. M. J. Ragas
    • 1
  • D. van de Meent
    • 1
    • 4
  1. 1.Department of Environmental Science, Institute for Wetland and Water Research (IWWR)Radboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Applied Environmental Science (ITM)Stockholm UniversityStockholmSweden
  3. 3.Università di TrentoCesenaItaly
  4. 4.Laboratory of Ecological Risk AssessmentNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations