Advertisement

Environmental Modeling & Assessment

, Volume 17, Issue 1–2, pp 177–191 | Cite as

The Impact of Uncertainty in Climate Targets and CO2 Storage Availability on Long-Term Emissions Abatement

  • Ilkka KeppoEmail author
  • Bob van der Zwaan
Article

Abstract

A major characteristic of our global interactive climate-energy system is the large uncertainty that exists with respect to both future environmental requirements and the means available for fulfilling these. Potentially, a key technology for leading the transition from the current fossil fuel-dominated energy system to a more sustainable one is carbon dioxide capture and storage. Uncertainties exist, however, concerning the large-scale implementability of this technology, such as related to the regional availability of storage sites for the captured CO2. We analyze these uncertainties from an integrated assessment perspective by using the bottom-up model TIAM-ECN and by studying a set of scenarios that cover a range of different climate targets and technology futures. Our study consists of two main approaches: (1) a sensitivity analysis through the investigation of a number of scenarios under perfect foresight decision making and (2) a stochastic programming exercise that allows for simultaneously considering a set of potential future states-of-the-world. We find that, if a stringent climate (forcing) target is a possibility, it dominates the solution: if deep CO2 emission reductions are not started as soon as possible, the target may become unreachable. Attaining a stringent climate target comes in any case at a disproportionally high price, which indicates that adaptation measures or climate damages might be preferable to the high mitigation costs such a target implies.

Keywords

Climate change Energy system modeling Carbon dioxide capture and storage (CCS) Mitigation target Storage potential Uncertainty 

Notes

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme through the PLANETS project (FP7/2007-2011, grant agreement no. 211859). Feedback and comments to this article are acknowledged from several colleagues, as well as two anonymous referees.

References

  1. 1.
    Deffeyes, K. S. (2005). Beyond oil: The view from Hubbert’s peak. Farrar, Straus & Giroux.Google Scholar
  2. 2.
    Forest, C. E., Stone, P. H., Sokolov, A., Allen, M. R., & Webster, M. D. (2002). Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295(5552), 113–117.CrossRefGoogle Scholar
  3. 3.
    Fuss, S., Szolgayova, W., Obersteiner, M., & Gusti, M. (2008). Investment under market and climate policy uncertainty. Applied Energy, 85(8), 708–721.CrossRefGoogle Scholar
  4. 4.
    GEA, Global Energy Assessment, IIASA (2011). Laxenburg, Austria, forthcoming.Google Scholar
  5. 5.
    Gerlagh, R., & van der Zwaan, B. (2006). Options and Instruments for a deep cut in CO2 emissions: Carbon dioxide capture or renewables, taxes or subsidies? The Energy Journal, 27(3), 25–48.CrossRefGoogle Scholar
  6. 6.
    Hendriks, C., Graus, W., & van Bergen, F. (2004). Global carbon dioxide storage potential and costs. Ecofys and TNO-NITG, Utrecht, the Netherlands.Google Scholar
  7. 7.
    Herzog, H., Caldeira, K., & Reilly, J. (2003). An issue of permanence: Assessing the effectiveness of temporary carbon storage. Climatic Change, 59(3), 293–310.CrossRefGoogle Scholar
  8. 8.
    Huijts, N. M. A., Midden, C. J. H., & Meijnders, L. (2007). Social acceptance of carbon dioxide storage. Energy Policy, 35(5), 2780–2789.CrossRefGoogle Scholar
  9. 9.
    IEA-ETP, International Energy Agency (IEA), OECD (2010). Energy Technology Perspectives (ETP), Paris, France.Google Scholar
  10. 10.
    IEA-WEO, International Energy Agency (IEA), OECD (2010). World Energy Outlook (WEO), Paris, France.Google Scholar
  11. 11.
    IPCC (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de Coninck, H. C., M., Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 442.Google Scholar
  12. 12.
    IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, pp. 104.Google Scholar
  13. 13.
    Kanudia, A., & Loulou, R. (1998). Robust responses to climate change via stochastic MARKAL: The case of Quebec. European Journal of Operational Research, 106(1), 15–30.CrossRefGoogle Scholar
  14. 14.
    Keppo, I., O’Neill, B. C., & Riahi, K. (2007). Probabilistic temperature change projections and energy system implications of greenhouse gas emission scenarios. Technological Forecasting and Social Change, 74(7), 936–961.CrossRefGoogle Scholar
  15. 15.
    Keppo, I., & Strubegger, M. (2010). Short term decisions for long term problems—The effect of foresight on model based energy systems analysis. Energy- The International Journal, 35(5), 2033–2042.CrossRefGoogle Scholar
  16. 16.
    Labriet, M., Loulou, R., & Kanudia A. (2008). Is a 2 degrees Celsius warming achievable under high uncertainty? Analysis with the TIMES integrated assessment model. Technical report, G200830, GERAD. Montréal, Canada.Google Scholar
  17. 17.
    Loulou, R., Remme, U., Kanudia, A., Lehtilä, A., & Goldstein G. (2005). Documentation for the TIMES Model, PART II. Energy Technology Systems Analysis Programme (ETSAP), [available at: http://www.etsap.org/documentation.asp]
  18. 18.
    Loulou, R., & Labriet, M. (2008). ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure. Computational Management Science, 5(1–2), 7–40.CrossRefGoogle Scholar
  19. 19.
    Loulou, R. (2008). ETSAP-TIAM: The TIMES integrated assessment model. Part II: Mathematical formulation. Computational Management Science, 5(1–2), 41–66.CrossRefGoogle Scholar
  20. 20.
    Loulou, R., Labriet, M., & Kanudia, A. (2009). Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Economics, 31(Supplement 2), S131–S143.CrossRefGoogle Scholar
  21. 21.
    Martinsen, D., Krey, V., Markewitz, P., & Vögele, S. (2006). A time step energy process model for Germany. Model structure and results. Energy Studies Review, 14(1), 35–57.Google Scholar
  22. 22.
    Mattsson, N. (2002). Introducing uncertain learning in an energy system model: a pilot study using GENIE. International Journal of Global Energy Issues, 18(2,3,4), 253–264.Google Scholar
  23. 23.
    Messner, S., Golodnikov, A., & Gritsevskii, A. (1996). A stochastic version of the dynamic linear programming model MESSAGE III. Energy - The International Journal, 21(9), 775–784.CrossRefGoogle Scholar
  24. 24.
    Nyqvist B. (2005). Limited foresight in a linear cost minimisation model of the global energy system. Gotherburg: Master’s Thesis in Complex Adaptive Systems, Physical Resource Theory, Chalmers University of Technology.Google Scholar
  25. 25.
    O'Neill, B. C., Riahi, K., & Keppo, I. (2010). Mitigation implications of midcentury targets that preserve long-term climate policy options. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1011–1016.CrossRefGoogle Scholar
  26. 26.
    Riahi, K., Rubin, E. S., & Schrattenholzer, L. (2004). Prospects for carbon capture and sequestration technologies assuming their technological learning. Energy, 29(9–10), 1309–1318.CrossRefGoogle Scholar
  27. 27.
    Syri, S., Lehtilä, A., Ekholm, T., Savolainen, I., Holttinen, H., & Peltola, E. (2008). Global energy and emissions scenarios for effective climate change mitigation—Deterministic and stochastic scenarios with the TIAM model. International Journal of Greenhouse Gas Control, 2(2), 274–285.Google Scholar
  28. 28.
    van der Zwaan, B. C. C., & Gerlagh, R. (2006). Climate sensitivity uncertainty and the necessity to transform global energy supply. Energy, 31(14), 2571–2587.CrossRefGoogle Scholar
  29. 29.
    van der Zwaan, B. C. C., & Gerlagh, R. (2009). Economics of geological CO2 storage and leakage. Climatic Change, 93(3/4), 285–309.CrossRefGoogle Scholar
  30. 30.
    van der Zwaan, B. C. C., & Smekens, K. (2009). CO2 capture and storage with leakage in an energy-climate model. Environmental Modeling and Assessment, 14(2), 135–148.CrossRefGoogle Scholar
  31. 31.
    Wilson, E. J., Johnson, T. L., & Keith, D. W. (2003). Regulating the ultimate sink: Managing the risks of geologic CO2 storage. Environmental Science and Technology, 37(16), 3476–3483.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Policy Studies, Energy research Center of the Netherlands (ECN)AmsterdamThe Netherlands
  2. 2.Lenfest Center for Sustainable Energy, The Earth InstituteColumbia UniversityColumbiaUSA
  3. 3.School of Advanced International StudiesJohns Hopkins UniversityBolognaItaly

Personalised recommendations