Environmental Modeling & Assessment

, Volume 17, Issue 1–2, pp 149–162 | Cite as

The Benefits of Cooperation Under Uncertainty: the Case of Climate Change

  • Thierry BréchetEmail author
  • Julien Thénié
  • Thibaut Zeimes
  • Stéphane Zuber


This article presents an analysis of the behaviour of countries defining their climate policies in an uncertain context. The analysis is made using the S-CWS model, a stochastic version of an integrated assessment growth model. The model includes a stochastic definition of the climate sensitivity parameter. We show that the impact of uncertainty on policy design critically depends on the shape of the damage function. We also examine the benefits of cooperation in the context of uncertainty: We highlight the existence of an additional benefit of cooperation, namely risk reduction.


Cooperation Uncertainty Climate change Integrated assessment model 

JEL Classification

C71 C73 D9 D62 F42 Q2 



The authors are grateful to Johan Eyckmans, Alain Haurie and Henry Tulkens for fruitful comments on preliminary versions of the paper. The CWS model has been developed under the CLIMNEG research project supported by the Belgian Science Policy (contract CP/05A).


  1. 1.
    Ambrosi, P., Hourcade, J.-Ch., Hallegatte, S., Lecocq, F., Dumas, P., & Ha-Duong, M. (2003). Optimal control models and elicitation of attitudes towards climate damages. Environmental Modeling and Assessment, 3, 133–147.CrossRefGoogle Scholar
  2. 2.
    Arrow, K. J. (2009). A note on uncertainty and discounting in models of economic growth. Journal of Risk and Uncertainty, 38(2), 87–94.CrossRefGoogle Scholar
  3. 3.
    Atkinson, G., Dietz, S., Helgeson, J., Hepburn, C., & Sælen, H. (2009). Siblings, not triplets: Social preferences for risk, inequality and time in discounting climate change. Economics: The Open-Access, Open-Assessment E-Journal, 3(26), 1–28.Google Scholar
  4. 4.
    Bahn, O., Haurie, A., & Malhamé, R. A. (2008). A stochastic control model for optimal timing of climate policies. Automatica, 44(6), 1545–1558.CrossRefGoogle Scholar
  5. 5.
    Basili, M., Chateauneuf, A., & Fontini, F. (2008). The precautionary principle as a rule of choice with optimism on windfall gains and pessimism on catastrophic losses. Ecological Economics, 67, 485–491.CrossRefGoogle Scholar
  6. 6.
    Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.Google Scholar
  7. 7.
    Ben-Tal, A., Golany, B., Nemirovski, A., & Vial, J.-Ph. (2005). Retailer–supplier flexible commitments contracts: A robust optimization. Manufacturing and Service Operations Management Approach, 7, 248–271.CrossRefGoogle Scholar
  8. 8.
    Ben-Tal, A., & Nemirovski, A. (2002) A robust optimization—methodology and applications. Mathematical Programming Series B, 99, 453–480.CrossRefGoogle Scholar
  9. 9.
    Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.Google Scholar
  10. 10.
    Bosetti, V., Carraro, C., Galeotti, M., Masseti, E., & Tavoni, M. (2006). WITCH: A world induced technical change hybrid model. The Energy Journal, 13–38.Google Scholar
  11. 11.
    Bosetti, V., & Tavoni, M. (2009). Uncertain R&D, backstop technology and GHGs stabilization. Energy Economics, 31, 18–26.CrossRefGoogle Scholar
  12. 12.
    Bosetti, V., Tavoni, M., Carraro, C., & Sgobbi, A. (2009). Delayed action and uncertain stabilisation targets. How much will the delay cost? Climatic Change, 96, 299–312.CrossRefGoogle Scholar
  13. 13.
    Bréchet, Th., Gerard, F., & Tulkens, H. (2011). Efficiency vs. stability of climate coalitions: A conceptual and computational appraisal. The Energy Journal, 32(1), 49–76.CrossRefGoogle Scholar
  14. 14.
    Bréchet, Th., Camacho, C., & Veliov, V. (2010). Model predictive control, the economy, and the issue of climate change. Université catholique de Louvain, CORE discussion paper 2010/16.Google Scholar
  15. 15.
    Bréchet, Th., Eyckmans, J., Gerard, F., Marbaix, Ph., Tulkens, H., & van Ypersele, J.-P. (2010). The impact of the unilateral EU commitment on the stability of international climate agreements. Climate Policy, 10, 148–166.CrossRefGoogle Scholar
  16. 16.
    Chichilnisky, G. (2000). An axiomatic approach to choice under uncertainty with catastrophic risks. Resource and Energy Economics, 22, 221–231.CrossRefGoogle Scholar
  17. 17.
    Dasgupta, P. (2008). Discounting climate change. Journal of Risk and Uncertainty, 37(2–3), 141–169.CrossRefGoogle Scholar
  18. 18.
    Forest, C. E., Stone, P. H., & Sokolov, A. P. (2006). Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Geophysical Research Letters, 33, L01705.CrossRefGoogle Scholar
  19. 19.
    Gaertner, P. S. (2001). Optimisation analysis and integrated models of the enhanced greenhouse effect. Environmental Modeling and Assessment, 6(1), 7–34.CrossRefGoogle Scholar
  20. 20.
    Gollier, Ch. (2001). The economics of risk and time. Cambridge: MIT.Google Scholar
  21. 21.
    Gollier, Ch. (2002). Discounting and uncertain future. Journal of Public Economics, 85, 149–166.CrossRefGoogle Scholar
  22. 22.
    Hegerl, G. C., Crowley, T. J., Hyde, W. T., & Frame, D. J. (2006). Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440, 1029–1032.CrossRefGoogle Scholar
  23. 23.
    Manne, A., Mendelsohn, R., & Richels, R. (1995). MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy, 23(1), 17–34.CrossRefGoogle Scholar
  24. 24.
    Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., & Stainforth, D. A. (2004). Quantification of modelling uncertainties in large ensemble of climate change simulations. Nature, 430, 768–772.CrossRefGoogle Scholar
  25. 25.
    Nordhaus, W., & Yang, Z. (1996). A regional dynamic general-equilibrium model of alternative climate-change strategies. American Economic Review, 86(4), 741–765.Google Scholar
  26. 26.
    Nordhaus, W. D., & Popp, D. (1997). What is the value of scientific knowledge? An application to global warming using the PRICE model. The Energy Journal, 18, 1–46.CrossRefGoogle Scholar
  27. 27.
    Intergovernmental Panel on Climate Change (2007). Fourth assessment report of the intergovernmental panel on climate change 2007. Cambridge: Cambridge University Press.Google Scholar
  28. 28.
    Persson, T., & von Below, D. (2008). Uncertainty, climate change and the global economy. CEPR Discussion Paper 7024.Google Scholar
  29. 29.
    Ramsey, F. P. (1928). A mathematical theory of saving. The Economic Journal, 38, 543–559.CrossRefGoogle Scholar
  30. 30.
    Roe, G., & Baker, M. (2007). Why is climate sensitivity so unpredictable? Science, 318, 629–632.CrossRefGoogle Scholar
  31. 31.
    Royer, D. L., Berner, R. A., & Park, J. (2007). Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature, 446, 530– 532.CrossRefGoogle Scholar
  32. 32.
    Shaw, W. D., & Woodward, R. T. (2008). Why environmental and resource economists should care about non-expected utility models. Resource and Energy Economics, 30, 66–89.CrossRefGoogle Scholar
  33. 33.
    Stern, N. (2006). The stern review on the economics of climate change. Cambridge: Cambridge University Press.Google Scholar
  34. 34.
    Thénié, J., van Delft, Ch., & Vial, J.-Ph. (2007). Automatic formulation of stochastic programs via an algebraic modeling language. Computational Management Science, 4, 17–40.CrossRefGoogle Scholar
  35. 35.
    Thénié, J., & Vial, J.-Ph. (2008). Step decision rules for multistage stochastic programming: A heuristic approach. Automatica, 44(6), 1569–1584.CrossRefGoogle Scholar
  36. 36.
    Tulkens, H., & Eyckmans, J. (2003). Simulating coalitionally stable burden sharing agreements for the climate change problem. Resource and Energy Economics, 25, 299–327.CrossRefGoogle Scholar
  37. 37.
    Tulkens, H., Germain, M., Toint, P., & de Zeeuw, A. (2003). Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. Journal of Economics Dynamics and Control, 28, 79–99.CrossRefGoogle Scholar
  38. 38.
    van der Zwaan, B. C. C., & Gerlagh, R. (2006). Climate sensitivity uncertainty and the necessity to transform global energy supply. Energy, 31, 2571–2587.CrossRefGoogle Scholar
  39. 39.
    von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  40. 40.
    Weitzman, M. (2009). On modeling and interpreting the economics of catastrophic climate change. Review of Economics and Statistics, 91(1), 1–19.CrossRefGoogle Scholar
  41. 41.
    Wets, R. J.-B. (2000). Stochastic programming models: Wait-and-see versus here-and-now. Technical report, University of California.Google Scholar
  42. 42.
    Zapert, R., Gaertner, P. S., & Filar, J. A. (1998). Uncertainty propagation within an integrated model of climate change. Energy Economics, 20(5–6), 571–598.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thierry Bréchet
    • 1
    Email author
  • Julien Thénié
    • 1
    • 2
  • Thibaut Zeimes
    • 1
  • Stéphane Zuber
    • 1
  1. 1.CORE, Chair Lhoist Berghmans in Environmental Economics and ManagementUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.ORDECSYS CompanyChêne-BougeriesSwitzerland

Personalised recommendations