Skip to main content
Log in

CFD Investigation of Particle Deposition in a Horizontal Looped Turbulent Pipe Flow

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper presents comprehensive 3D numerical investigations on depositions of particles flowing through a horizontal pipe loop consisting of four bends. The multiphase mixture model available in FLUENT 6.2 was used in this study. In this numerical simulation, five different particle sizes have been used as secondary phases to calculate real multiphase effect in which inter-particle interaction has been considered. The deposition of particles along the periphery of the pipe wall was investigated as a function of particle size and fluid velocity. The simulations showed that near the upstream of the bends, maximum particle concentration occurred at the bottom of the pipe. However, downstream the bends, the maximum particle concentration occurred at an angle of 60° from the bottom. The larger particles clearly showed deposition near the bottom wall except downstream. As expected, the smaller particles showed less tendency of deposition and lesser at higher velocity. This numerical investigation showed qualitative agreement with the experiments conducted by Commonwealth Scientific and Industrial Research Organisation, Melbourne team for similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\( \vec{a} \) :

secondary-phase particle’s acceleration

C + :

concentration of particles

Cf :

friction co-efficient

D :

pipe diameter

D f :

fluid diffusivity

D p :

particle diffusion coefficient

d p :

diameter of the particles of secondary phase

\( \vec{F} \) :

body force

f drag :

drag function

k :

proportional constant

k D :

constant

k n :

eigenvalues

L :

Length scale

l :

particle mean free path

m T :

mass transfer

n :

number of phases

P :

Peclet number

R D :

deposition flux

R e :

entrainment flux of the particles

Re*:

Reynolds number based on the friction velocity

Re f :

fluid Reynolds number

S :

Stokes number

t 0 :

initial time

T L :

integral flow time scale

T P :

particle integral time scale

U :

Velocity scale

u* :

the friction velocity

u*:

friction velocity

v :

free-flight velocity

\( {\vec{v}_{{dr,k}}} \) :

drift velocity for secondary phase

V f :

pipe average fluid velocity

v f :

fluctuating velocity

v g :

Particle free fall velocity

v g :

gravitational settling velocity of the particle

\( {\vec{v}_m} \) :

mass-averaged velocity of the mixture

\( {\vec{v}_{{qp}}} \) :

relative velocity

\( \left\langle {v\prime_p^2} \right\rangle \) :

particle’s mean square velocity

λ K :

Kolmogorov length scale

ρ m :

mixture density

ρ p :

densities of the particle

α k :

volume fraction of phase

ε :

kinetic energy dissipation

ɸ :

angle around the pipe circumference

γcross :

crossing trajectories coefficient

γ inert :

inertial coefficient

λ :

free-flight/diffusion ratio

μm :

viscosity of the mixture

ν f :

kinematic viscosity

ν f :

kinematic viscosity

ρ f :

densities of the fluid

τ p :

particle relaxation time

τ qp :

particulate relaxation time

τ s :

wall shear stress

References

  1. Abuzeid, S., Busniana, A. A., & Ahmadi, G. (1991). Wall deposition of aerosol particles in a turbulent channel flow. Journal of Aerosol Science, 22, 43–62.

    Article  CAS  Google Scholar 

  2. Anderson, R. J., & Russell, T. W. F. (1970). Circumferential variation of interchange in horizontal annular two-phase flow. Industrial & Engineering Chemistry Fundamentals, 9, 340.

    Article  Google Scholar 

  3. Anderson, R. J., & Russell, T. W. F. (1970). Film formation in two-phase annular flow. AIChE Journal, 14, 626–633.

    Article  Google Scholar 

  4. David, Y. H. P., Romay-Novas, F., & Liu, B. Y. H. (1987). Experimental study of particle deposition in bends of circular cross section. Aerosol Science and Technology, 7, 301–315.

    Article  Google Scholar 

  5. Davies, C. N. (1966). Aerosol science. London: Academic.

    Google Scholar 

  6. FLUENT. FLUENT INC. http://www.fluent.com/software/fluent/

  7. Friendlander, S. K., & Johnstone, H. F. (1957). Deposition of suspended particles from turbulent gas streams. Industrial and Engineering Chemistry, 49, 1151.

    Article  Google Scholar 

  8. Grainger, C., Wu, J., Nguyen, B. V., Ryan, G., Jayanratne, A., & Mathes, P. (2003). Part 1: settling, re-suspension and transport. Melbourne: CRC-CFC.

    Google Scholar 

  9. Hossain, A. (2005). CFD investigation for turbidity spikes in drinking water distribution networks, PhD Thesis, Swinburne University of Technology, Melbourne, Australia.

  10. Hossain, A., Naser, J., McManus, A. M. K., & Ryan, G. (2003). CFD investigation of particle deposition and dispersion in a horizontal pipe. Third International Conference on CFD in the Minerals and Process Industries, December 2003, CSIRO, Melbourne, Australia

  11. Landahl, H. D., & Herrmann, R. G. (1949). Sampling of liquid aerosols by wires, cylinders, and slides, and the efficiency of impaction of the droplets. Journal of Colloid and Interface Science, 4, 103–136.

    CAS  Google Scholar 

  12. Laurinat, J. E., Hanratty, T. J., & Jepson, W. P. (1985). Film thickness distribution for gas–liquid annular flow in a horizontal pipe. Physiochemical Hydrodynamics, 6, 179–195.

    CAS  Google Scholar 

  13. Li, A., & Ahmadi, G. (1993). Deposition of aerosols on surfaces in a turbulent channel flow. International Journal of Engineering Science, 31, 435.

    Article  CAS  Google Scholar 

  14. Liu, B. Y. H., & Agarwal, J. K. (1974). Experimental observation of aerosol deposition in turbulent flows. Journal of Aerosol Science, 5, 145.

    Article  CAS  Google Scholar 

  15. Manninen, M., Taivassalo, V., & Kallio, S. (1996). On the mixture model for multiphase flow. VTT Publications 288. Finland: Technical Research Centre of Finland.

    Google Scholar 

  16. Mols, B., & Oliemans, R. V. A. (1998). A Turbulent diffusion model for particle dispersion and deposition in horizontal tube flow. International Journal of Multiphase Flow, 24(1), 55–75.

    Article  CAS  Google Scholar 

  17. Schiller, L., & Nuamann, Z. (1935). Zeitschrift des Vereines Deutscher Ingenieure, 77, 318.

    Google Scholar 

  18. Spalart, P. and Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. American Institute of Aeronautics and Astronautics.

  19. Stovin, V. R., & Saul, A. J. (1998). A computational fluid dynamics particle tracking approach to efficiency prediction. Water Science and Technology, 37(1), 285–293.

    Article  CAS  Google Scholar 

  20. Swailes, D. C., & Reeks, M. W. (1994). Particle deposition from a turbulent flow. I. A steady-state model for high inertia particles. Physics of Fluids, 6(10), 3392.

    Article  Google Scholar 

  21. Ta, C. T., Beckley, J., & Eades, A. (2001). A multiphase CFD model of DAF process. Water Science and Technology, 43(8), 153–157.

    CAS  Google Scholar 

  22. Thomson, D. J. (2003). Dispersion of particle pairs and decay of scalar fields in isotropic turbulence. Physics of Fluids, 15(3), 801–813.

    Article  CAS  Google Scholar 

  23. Tsai, C. J., & Pui, D. Y. H. (1990). Numerical study of particle deposition in bends of a circular cross section laminar flow regime. Aerosol Science and Technology, 12, 813–831.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monzur Alam Imteaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, A., Naser, J. & Imteaz, M.A. CFD Investigation of Particle Deposition in a Horizontal Looped Turbulent Pipe Flow. Environ Model Assess 16, 359–367 (2011). https://doi.org/10.1007/s10666-011-9252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9252-8

Keywords

Navigation