Skip to main content
Log in

A Comprehensive Numerical Model Simulating Gas, Heat, and Moisture Transport in Sanitary Landfills and Methane Oxidation in Final Covers

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A model to simulate gas, heat, and moisture transport through a sanitary landfill has been developed. The model not only considers the different processes that go on in a landfill but also the oxidation of methane in the final cover. The model was calibrated using published results and field data from a pilot scale landfill in Calgary. The model captures the physics of the different processes quite well. Simulations from the model show that waste permeability had a significant impact on the temperature, pressure distribution, and flux from a landfill. The presence of the final and intermediate covers enhanced the gas storage capacity of the landfill. Biodegradation of the waste was enhanced as the final cover minimized the atmospheric influences. In addition, the composition of landfill gas emitted to the atmosphere was significantly different from the composition of gas generated in landfill due to the presence of covers as some of the methane is oxidized to carbon dioxide. There was no significant benefit of using a final cover of higher depth. The presence and number of intermediate covers had an impact on gas flux and temperature distribution within a landfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agnew, J. M., & Leonard, J. J. (2003). The physical properties of compost. Compost Science and Utilization, 11(3), 238–264.

    Google Scholar 

  2. Arigala, S. G., Tsotsis, T. T., Webster, I. A., Yortsos, Y. C., & Kattapuram, J. J. (1995). Gas generation, transport and extraction in landfills. Journal of Environmental Engineering, 121(1), 33–44.

    Article  CAS  Google Scholar 

  3. Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier.

    Google Scholar 

  4. Bear, J. (1979). Hydraulics of groundwater. London: McGraw-Hill.

    Google Scholar 

  5. Bingmer, H. G., & Crutzen, P. J. (1987). The production of methane from solid wastes. Journal of Geophysical Research, 92(D2), 2181–2187.

    Article  Google Scholar 

  6. CH2MHILL. (2002). Landfill gas feasibility assessment study for the City of Calgary Solid Waste Services Division. Calgary: City of Calgary Solid Waste Services Division.

    Google Scholar 

  7. Chen, N. H., & Othmer, D. F. (1962). New Generalized equation for gas diffusion coefificient. Journal of Chemical and Engineering Data, 7(1), 37–41.

    Article  Google Scholar 

  8. Chen, Y.-C., Wu, C.-H., & Hu, H.-Y. (2000). Numerical simulation of gas emission in a sanitary landfill equipped with a passive venting system. Journal of Environmental Science & Health, A35(9), 1735–1747.

    Article  CAS  Google Scholar 

  9. Chen, Y.-C., Chen, K.-S., & Wu, C.-H. (2003). Numerical simulation of gas flow around a passive vent in a sanitary landfill. Journal of Hazardous Materials, B100, 39–52.

    Article  Google Scholar 

  10. Cherry, R. S., & Thompson, D. N. (1997). Shift from growth to nutrient-limited maintenance kinetics during biofilter acclimation. Biotechnology and Bioengineering, 56(3), 330–339.

    Article  CAS  Google Scholar 

  11. Chung, T.-H., Ajlan, M., Lee, L. L., & Starling, K. E. (1988). Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Industrial & Engineering Chemistry Research, 27(4), 671–679.

    Article  CAS  Google Scholar 

  12. Copty, N. K., Ergene, D., & Onay, T. T. (2004). Stochastic model for landfill gas transport and energy recovery. Journal of Environmental Engineering, 130(9), 1042–1049.

    Article  CAS  Google Scholar 

  13. Czepiel, P. M., Mosher, B., Crill, P. M., & Harriss, R. C. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research, 101(D11), 16721–16729.

    Article  CAS  Google Scholar 

  14. El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1996). Numerical modelling of generation and transport of gas and heat in sanitary landfills I. Model formulation. Waste Management & Research, 14, 483–504.

    CAS  Google Scholar 

  15. El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1996). Numerical modelling of generation and transport of gas and heat in sanitary landfills II. Model application. Waste Management & Research, 14, 537–551.

    CAS  Google Scholar 

  16. Findikakis, A. N., & Leckie, J. O. (1979). Numerical simulation of gas flow in Sanitary Landfills. Journal of Environmental Engineering Division, 105, 927–945.

    Google Scholar 

  17. Garg, A., & Achari, G. (2007). Application of fuzzy logic to estimate flow of methane for energy generation at a sanitary landfill. Journal of Energy Engineering, 133(4), 212–223.

    Article  Google Scholar 

  18. Garg, A., Achari, G., & Joshi, R. C. (2006). A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Management & Research, 24(4), 363–375.

    Article  CAS  Google Scholar 

  19. Gunnerson, C. G., & Stucky, D. C. (1986). Integrated resource recovery: Anaerobic digestion principles and practices for biogas systems. World Bank technical paper no. 49, UNDP project report no. 5, Washington D.C.

  20. Hashemi, M., Kavak, H. I., Tsotsis, T. T., & Sahimi, M. (2002). Computer simulation of gas generation and transport in landfills-I: quasi-steady-state condition. Chemical Engineering Science, 57, 2475–2501.

    Article  CAS  Google Scholar 

  21. Hettiarachchi, V. C. (2005). Mass, heat, and moisture transport in methanobiofilters. Ph.D. thesis, University of Calgary, Calgary, Canada.

  22. Kaviany, M. (1995). Principles of heat transfer in porous media. New York: Springer.

    Google Scholar 

  23. Kightley, D., Nedwell, D. B., & Cooper, M. (1995). Capacity of methane oxidation in landfill cover soils measured in laboratory scale soil microcosms. Applied and Environmental Microbiology, 61(2), 592–601.

    CAS  Google Scholar 

  24. Levelton, B. H., & Associates. (1991). Inventory of methane emissions from landfills in Canada. Environment Canada, File 490–974, June 1991, Richmond, B.C.

  25. Lu, A.-H., & Kunz, C. O. (1981). Gas flow model to determine methane production at sanitary landfills. Environmental Science & Technology, 15(4), 436–440.

    Article  CAS  Google Scholar 

  26. Metcalfe, D. E., & Farquhar, G. J. (1987). Modelling gas migration through unsaturated soils from waste disposal sites. Water, Air, and Soil Pollution, 32, 247–259.

    Article  CAS  Google Scholar 

  27. Nastev, M. (1998). Modelling landfill gas generation and migration in sanitary landfills and geological formations. Ph.D. dissertation, Laval University, Quebec, Canada.

  28. Nastev, M., Therrien, R., Lefebvre, R., & Gelinas, P. (2001). Gas production and migration in landfills and geological materials. Journal of Contaminant Hydrology, 52, 187–211.

    Article  CAS  Google Scholar 

  29. Neufeld, P. D., Janzen, A. R., & Aziz, R. A. (1972). Empirical equation to calculate 16 of the transport collision integrals for the Lennard-Jones (12-6) potential. Journal of Chemical Physics, 57(3), 1100–1102.

    Article  CAS  Google Scholar 

  30. Nozhevnikova, A. N., Nekrasova, V. K., Lebedev, V. S., & Lifshits, A. B. (1993). Microbiological processes in landfills. Water Science Technology, 27, 243–252.

    CAS  Google Scholar 

  31. Palmisano, A. C., & Barlaz, M. A. (1996). Microbiology of solid waste. New York: CRC.

    Google Scholar 

  32. Parker, J. C. (1989). Multiphase flow and transport in porous media. Review of Geophysics, 27(3), 311–328.

    Article  Google Scholar 

  33. Perera, L. A. K. (2001). Gas migration model for sanitary landfill cover systems. Ph.D. Thesis, University of Calgary, Calgary.

  34. Perera, L. A. K., Achari, G., & Hettiaratchi, J. P. A. (2002). Determination of source strength of landfill gas: a numerical modeling approach. Journal of Environmental Engineering, 128(5), 461–471.

    Article  CAS  Google Scholar 

  35. Perera, M. D. N., Hettiaratchi, J. P. A., & Achari, G. (2002). A mathematical modeling approach to improve the point estimation of landfill gas surface emissions using the flux chamber technique. Journal of Environmental Engineering and Science, 1, 451–463.

    Article  CAS  Google Scholar 

  36. Perera, L. A. K., Achari, G., & Hettiaratchi, J. P. A. (2004). An assessment of the spatial variability of greenhouse gas emissions from landfills: a GIS based statistical-numerical approach. Journal of Environmental Informatics, 4(1), 11–30.

    Article  Google Scholar 

  37. Poling, B. E., Prausnitz, J. M., & O'Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.

    Google Scholar 

  38. Pruess, K. (1991). TOUGH 2—a general purpose numerical simulator for multiphase fluid and heat flow. Berkeley: Earth Science Division, Lawrence Berkley Laboratory, University of California.

    Google Scholar 

  39. Rees, J. F. (1980). The fate of carbon compounds in the landfill disposal of organic matter. Journal of Chemical Technology and Biotechnology, 30, 161–175.

    Article  CAS  Google Scholar 

  40. Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids. New York: McGraw-Hill.

    Google Scholar 

  41. Senevirathna, D. G. M., Achari, G., & Hettiaratchi, J. P. A. (2006). A laboratory evaluation of errors associated with the determination of landfill gas emissions. Canadian Journal of Civil Engineering, 33, 240–244.

    Article  Google Scholar 

  42. Stein, V. B., Hettiaratchi, J. P. A., & Achari, G. (2001). A numerical model for biological oxidation and migration of methane in soils. Practice Periodical of Hazardous, Toxic and Radiative Waste Management, 5(4), 225–234.

    Article  CAS  Google Scholar 

  43. Thomas, H. R., & Ferguson, W. J. (1999). A fully coupled heat and mass transfer model incorporating contaminant gas transfer in an unsaturated porous medium. Computers and Geotechnics, 24, 65–87.

    Article  Google Scholar 

  44. Townsend, T. G., Wise, W. R., & Jain, P. (2005). One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. Journal of Environmental Engineering, 131(12), 1716–1723.

    Article  CAS  Google Scholar 

  45. Troeh, F. R., Jabro, J. D., & Kirkham, D. (1982). Gaseous diffusion equations for porous materials. Geoderma, 27, 239–253.

    Google Scholar 

  46. USEPA (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide, EPA-600/R-05/047 http://www.epa.gov/ttn/catc/products.html#software.

    Article  Google Scholar 

  47. Van Dijken, J. P., & Harder, W. (1975). Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnology and Bioengineering, 17(1), 15–30.

    Article  Google Scholar 

  48. Van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  49. Vigneault, H., Lefebvre, R., & Nastev, M. (2004). Numerical simulation of the radius of influence for landfill gas well. Vadose Zone Journal, 3, 909–916.

    CAS  Google Scholar 

  50. Visscher, A. D., Thomas, D., Boeckx, P., & Cleemput, O. V. (1999). Methane oxidation in simulated landfill cover soil environments. Environmental Science & Technology, 33(11), 1854–1859.

    Article  Google Scholar 

  51. Whalen, S. C., Reebugh, W. S., & Sandberk, K. A. (1990). Rapid methane oxidation in landfill cover soil. Applied and Environmental Microbiology, 56(11), 3405–3411.

    CAS  Google Scholar 

  52. Wilshusen, J. H. (2003). An investigation of the role of oxygen and nitrogen in methane oxidation and the formation of exopolymeric substances (EPS) in biofilters. Masters Thesis, University of Calgary, Calgary.

  53. Young, A. (1989). Mathematical modelling of landfill degradation. Journal of Chemical Technology and Biotechnology, 46, 189–208.

    CAS  Google Scholar 

  54. Young, A. (1989). Mathematical modelling of landfill gas extraction. Journal of Environmental Engineering, 115(6), 1073–1087.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Achari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, A., Achari, G. A Comprehensive Numerical Model Simulating Gas, Heat, and Moisture Transport in Sanitary Landfills and Methane Oxidation in Final Covers. Environ Model Assess 15, 397–410 (2010). https://doi.org/10.1007/s10666-009-9217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-009-9217-3

Keywords

Navigation