Environmental Modeling & Assessment

, Volume 15, Issue 5, pp 397–410 | Cite as

A Comprehensive Numerical Model Simulating Gas, Heat, and Moisture Transport in Sanitary Landfills and Methane Oxidation in Final Covers

  • Anurag Garg
  • Gopal Achari


A model to simulate gas, heat, and moisture transport through a sanitary landfill has been developed. The model not only considers the different processes that go on in a landfill but also the oxidation of methane in the final cover. The model was calibrated using published results and field data from a pilot scale landfill in Calgary. The model captures the physics of the different processes quite well. Simulations from the model show that waste permeability had a significant impact on the temperature, pressure distribution, and flux from a landfill. The presence of the final and intermediate covers enhanced the gas storage capacity of the landfill. Biodegradation of the waste was enhanced as the final cover minimized the atmospheric influences. In addition, the composition of landfill gas emitted to the atmosphere was significantly different from the composition of gas generated in landfill due to the presence of covers as some of the methane is oxidized to carbon dioxide. There was no significant benefit of using a final cover of higher depth. The presence and number of intermediate covers had an impact on gas flux and temperature distribution within a landfill.


Landfill gas Landfill modeling LFG generation LFG transport 


  1. 1.
    Agnew, J. M., & Leonard, J. J. (2003). The physical properties of compost. Compost Science and Utilization, 11(3), 238–264.Google Scholar
  2. 2.
    Arigala, S. G., Tsotsis, T. T., Webster, I. A., Yortsos, Y. C., & Kattapuram, J. J. (1995). Gas generation, transport and extraction in landfills. Journal of Environmental Engineering, 121(1), 33–44.CrossRefGoogle Scholar
  3. 3.
    Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier.Google Scholar
  4. 4.
    Bear, J. (1979). Hydraulics of groundwater. London: McGraw-Hill.Google Scholar
  5. 5.
    Bingmer, H. G., & Crutzen, P. J. (1987). The production of methane from solid wastes. Journal of Geophysical Research, 92(D2), 2181–2187.CrossRefGoogle Scholar
  6. 6.
    CH2MHILL. (2002). Landfill gas feasibility assessment study for the City of Calgary Solid Waste Services Division. Calgary: City of Calgary Solid Waste Services Division.Google Scholar
  7. 7.
    Chen, N. H., & Othmer, D. F. (1962). New Generalized equation for gas diffusion coefificient. Journal of Chemical and Engineering Data, 7(1), 37–41.CrossRefGoogle Scholar
  8. 8.
    Chen, Y.-C., Wu, C.-H., & Hu, H.-Y. (2000). Numerical simulation of gas emission in a sanitary landfill equipped with a passive venting system. Journal of Environmental Science & Health, A35(9), 1735–1747.CrossRefGoogle Scholar
  9. 9.
    Chen, Y.-C., Chen, K.-S., & Wu, C.-H. (2003). Numerical simulation of gas flow around a passive vent in a sanitary landfill. Journal of Hazardous Materials, B100, 39–52.CrossRefGoogle Scholar
  10. 10.
    Cherry, R. S., & Thompson, D. N. (1997). Shift from growth to nutrient-limited maintenance kinetics during biofilter acclimation. Biotechnology and Bioengineering, 56(3), 330–339.CrossRefGoogle Scholar
  11. 11.
    Chung, T.-H., Ajlan, M., Lee, L. L., & Starling, K. E. (1988). Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Industrial & Engineering Chemistry Research, 27(4), 671–679.CrossRefGoogle Scholar
  12. 12.
    Copty, N. K., Ergene, D., & Onay, T. T. (2004). Stochastic model for landfill gas transport and energy recovery. Journal of Environmental Engineering, 130(9), 1042–1049.CrossRefGoogle Scholar
  13. 13.
    Czepiel, P. M., Mosher, B., Crill, P. M., & Harriss, R. C. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research, 101(D11), 16721–16729.CrossRefGoogle Scholar
  14. 14.
    El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1996). Numerical modelling of generation and transport of gas and heat in sanitary landfills I. Model formulation. Waste Management & Research, 14, 483–504.Google Scholar
  15. 15.
    El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1996). Numerical modelling of generation and transport of gas and heat in sanitary landfills II. Model application. Waste Management & Research, 14, 537–551.Google Scholar
  16. 16.
    Findikakis, A. N., & Leckie, J. O. (1979). Numerical simulation of gas flow in Sanitary Landfills. Journal of Environmental Engineering Division, 105, 927–945.Google Scholar
  17. 17.
    Garg, A., & Achari, G. (2007). Application of fuzzy logic to estimate flow of methane for energy generation at a sanitary landfill. Journal of Energy Engineering, 133(4), 212–223.CrossRefGoogle Scholar
  18. 18.
    Garg, A., Achari, G., & Joshi, R. C. (2006). A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Management & Research, 24(4), 363–375.CrossRefGoogle Scholar
  19. 19.
    Gunnerson, C. G., & Stucky, D. C. (1986). Integrated resource recovery: Anaerobic digestion principles and practices for biogas systems. World Bank technical paper no. 49, UNDP project report no. 5, Washington D.C.Google Scholar
  20. 20.
    Hashemi, M., Kavak, H. I., Tsotsis, T. T., & Sahimi, M. (2002). Computer simulation of gas generation and transport in landfills-I: quasi-steady-state condition. Chemical Engineering Science, 57, 2475–2501.CrossRefGoogle Scholar
  21. 21.
    Hettiarachchi, V. C. (2005). Mass, heat, and moisture transport in methanobiofilters. Ph.D. thesis, University of Calgary, Calgary, Canada.Google Scholar
  22. 22.
    Kaviany, M. (1995). Principles of heat transfer in porous media. New York: Springer.Google Scholar
  23. 23.
    Kightley, D., Nedwell, D. B., & Cooper, M. (1995). Capacity of methane oxidation in landfill cover soils measured in laboratory scale soil microcosms. Applied and Environmental Microbiology, 61(2), 592–601.Google Scholar
  24. 24.
    Levelton, B. H., & Associates. (1991). Inventory of methane emissions from landfills in Canada. Environment Canada, File 490–974, June 1991, Richmond, B.C.Google Scholar
  25. 25.
    Lu, A.-H., & Kunz, C. O. (1981). Gas flow model to determine methane production at sanitary landfills. Environmental Science & Technology, 15(4), 436–440.CrossRefGoogle Scholar
  26. 26.
    Metcalfe, D. E., & Farquhar, G. J. (1987). Modelling gas migration through unsaturated soils from waste disposal sites. Water, Air, and Soil Pollution, 32, 247–259.CrossRefGoogle Scholar
  27. 27.
    Nastev, M. (1998). Modelling landfill gas generation and migration in sanitary landfills and geological formations. Ph.D. dissertation, Laval University, Quebec, Canada.Google Scholar
  28. 28.
    Nastev, M., Therrien, R., Lefebvre, R., & Gelinas, P. (2001). Gas production and migration in landfills and geological materials. Journal of Contaminant Hydrology, 52, 187–211.CrossRefGoogle Scholar
  29. 29.
    Neufeld, P. D., Janzen, A. R., & Aziz, R. A. (1972). Empirical equation to calculate 16 of the transport collision integrals for the Lennard-Jones (12-6) potential. Journal of Chemical Physics, 57(3), 1100–1102.CrossRefGoogle Scholar
  30. 30.
    Nozhevnikova, A. N., Nekrasova, V. K., Lebedev, V. S., & Lifshits, A. B. (1993). Microbiological processes in landfills. Water Science Technology, 27, 243–252.Google Scholar
  31. 31.
    Palmisano, A. C., & Barlaz, M. A. (1996). Microbiology of solid waste. New York: CRC.Google Scholar
  32. 32.
    Parker, J. C. (1989). Multiphase flow and transport in porous media. Review of Geophysics, 27(3), 311–328.CrossRefGoogle Scholar
  33. 33.
    Perera, L. A. K. (2001). Gas migration model for sanitary landfill cover systems. Ph.D. Thesis, University of Calgary, Calgary.Google Scholar
  34. 34.
    Perera, L. A. K., Achari, G., & Hettiaratchi, J. P. A. (2002). Determination of source strength of landfill gas: a numerical modeling approach. Journal of Environmental Engineering, 128(5), 461–471.CrossRefGoogle Scholar
  35. 35.
    Perera, M. D. N., Hettiaratchi, J. P. A., & Achari, G. (2002). A mathematical modeling approach to improve the point estimation of landfill gas surface emissions using the flux chamber technique. Journal of Environmental Engineering and Science, 1, 451–463.CrossRefGoogle Scholar
  36. 36.
    Perera, L. A. K., Achari, G., & Hettiaratchi, J. P. A. (2004). An assessment of the spatial variability of greenhouse gas emissions from landfills: a GIS based statistical-numerical approach. Journal of Environmental Informatics, 4(1), 11–30.CrossRefGoogle Scholar
  37. 37.
    Poling, B. E., Prausnitz, J. M., & O'Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.Google Scholar
  38. 38.
    Pruess, K. (1991). TOUGH 2—a general purpose numerical simulator for multiphase fluid and heat flow. Berkeley: Earth Science Division, Lawrence Berkley Laboratory, University of California.Google Scholar
  39. 39.
    Rees, J. F. (1980). The fate of carbon compounds in the landfill disposal of organic matter. Journal of Chemical Technology and Biotechnology, 30, 161–175.CrossRefGoogle Scholar
  40. 40.
    Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids. New York: McGraw-Hill.Google Scholar
  41. 41.
    Senevirathna, D. G. M., Achari, G., & Hettiaratchi, J. P. A. (2006). A laboratory evaluation of errors associated with the determination of landfill gas emissions. Canadian Journal of Civil Engineering, 33, 240–244.CrossRefGoogle Scholar
  42. 42.
    Stein, V. B., Hettiaratchi, J. P. A., & Achari, G. (2001). A numerical model for biological oxidation and migration of methane in soils. Practice Periodical of Hazardous, Toxic and Radiative Waste Management, 5(4), 225–234.CrossRefGoogle Scholar
  43. 43.
    Thomas, H. R., & Ferguson, W. J. (1999). A fully coupled heat and mass transfer model incorporating contaminant gas transfer in an unsaturated porous medium. Computers and Geotechnics, 24, 65–87.CrossRefGoogle Scholar
  44. 44.
    Townsend, T. G., Wise, W. R., & Jain, P. (2005). One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. Journal of Environmental Engineering, 131(12), 1716–1723.CrossRefGoogle Scholar
  45. 45.
    Troeh, F. R., Jabro, J. D., & Kirkham, D. (1982). Gaseous diffusion equations for porous materials. Geoderma, 27, 239–253.Google Scholar
  46. 46.
    USEPA (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide, EPA-600/R-05/047 Scholar
  47. 47.
    Van Dijken, J. P., & Harder, W. (1975). Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnology and Bioengineering, 17(1), 15–30.CrossRefGoogle Scholar
  48. 48.
    Van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.CrossRefGoogle Scholar
  49. 49.
    Vigneault, H., Lefebvre, R., & Nastev, M. (2004). Numerical simulation of the radius of influence for landfill gas well. Vadose Zone Journal, 3, 909–916.Google Scholar
  50. 50.
    Visscher, A. D., Thomas, D., Boeckx, P., & Cleemput, O. V. (1999). Methane oxidation in simulated landfill cover soil environments. Environmental Science & Technology, 33(11), 1854–1859.CrossRefGoogle Scholar
  51. 51.
    Whalen, S. C., Reebugh, W. S., & Sandberk, K. A. (1990). Rapid methane oxidation in landfill cover soil. Applied and Environmental Microbiology, 56(11), 3405–3411.Google Scholar
  52. 52.
    Wilshusen, J. H. (2003). An investigation of the role of oxygen and nitrogen in methane oxidation and the formation of exopolymeric substances (EPS) in biofilters. Masters Thesis, University of Calgary, Calgary.Google Scholar
  53. 53.
    Young, A. (1989). Mathematical modelling of landfill degradation. Journal of Chemical Technology and Biotechnology, 46, 189–208.Google Scholar
  54. 54.
    Young, A. (1989). Mathematical modelling of landfill gas extraction. Journal of Environmental Engineering, 115(6), 1073–1087.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Civil EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations