Environmental Modeling & Assessment

, Volume 14, Issue 1, pp 47–57 | Cite as

Managing Uncertainty in Risk-Based Corrective Action Design: Global Sensitivity Analysis of Contaminant Fate and Exposure Models Used in the Dose Assessment

  • S. Avagliano
  • L. Parrella


A variance-based global sensitivity analysis (GSA) was applied to the dose assessment model used in the risk-based corrective action methodology of environmental risk analysis to identify key sources of variability and uncertainty and quantify the relative contribution of these sources to the variance of estimated dose. GSA was performed applying extended Fourier amplitude sensitivity test technique. The soil-to-air contaminant transport pathway within an inhalation exposure scenario was addressed. Three persistent semi-volatile carcinogenic chemicals, including polychlorinated biphenyls, benzo(a)pyrene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin, were chosen as contaminants of concern.


Risk-based corrective action Inhalation dose model Global sensitivity analysis 



The authors would like to acknowledge the support, the assistance, and the insights of Carlo Cremisini, Head of Section for Environmental Evaluation Methods Development of ENEA. We also wish to thank Giuseppe Di Landa who contributed to the manuscript revision.


  1. 1.
    Agenzia per la protezione dell'ambiente e per i servizi tecnici (APAT). (2002). ROME (v2.1) – ReasOnable Maximum Exposure.Google Scholar
  2. 2.
    Archer, G. E. B., Saltelli, A., & Sobol, I. M. (1997). Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58, 99–120. doi: 10.1080/00949659708811825.CrossRefGoogle Scholar
  3. 3.
    Bennett, D. H., Kastenberg, W. E., & McKone, T. E. (1999). A multimedia, multiple pathway risk assessment of atrazine: The impact of age differenziated exposure including joint uncertainty and variability. Reliability Engineering & Systems Safety, 63, 185–198. doi: 10.1016/S0951-8320(98)00046-5.CrossRefGoogle Scholar
  4. 4.
    Connor, J. A., Newell, C. J. & Malander, M. W. (1996). Parameter estimation guidelines for Risk-Based Corrective Action (RBCA) modeling. In Proc. 3rd Conf. on Petroleum Hydrocarbons (NGWA) (p. 19). Houston, TX.Google Scholar
  5. 5.
    Cousins, I. T., Beck, A. J., & Jones, K. C. (1999). A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface. Science of the Total Environment, 228, 5–24. doi: 10.1016/S0048-9697(99)00015-7.CrossRefGoogle Scholar
  6. 6.
    Cukier, R. I., Levine, H. B., & Shuler, K. E. (1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26, 1–42. doi: 10.1016/0021-9991(78)90097-9.CrossRefGoogle Scholar
  7. 7.
    E 1739-95 Standard guide for Risk-Based Corrective Action Applied at petroleum release sites. (2001). Annual Book of ASTM Standards vol. 11.04 (pp. 908–959). West Conshohocken, PA: American Society for Testing and Materials.Google Scholar
  8. 8.
    E 2081-00 Standard guide for Risk-Based Corrective Action. (2001). Annual Book of ASTM Standards vol. 11.04 (pp. 1164–1257). West Conshohocken, PA: American Society for Testing and Materials.Google Scholar
  9. 9.
    Groundwater Services, Inc. (2003). RBCA ToolKit for chemical releases (v1.3b).Google Scholar
  10. 10.
    Hertwich, E. G., McKone, T. E., & Peace, W. S. (2000). A systematic uncertainty analysis of an evaluative fate and exposure models. Risk Analysis, 20, 439–454. doi: 10.1111/0272-4332.204043.CrossRefGoogle Scholar
  11. 11.
    Joint Research Center of the European Commission. (2003). Simulation environment for uncertainty and sensitivity analysis. SIMLAB (v2.2), Ispra (VA), Italy.Google Scholar
  12. 12.
    Jury, W. A., Gardner, W. R., & Gardner,W. H. (Eds.) (1991). Soil physics, 5th edn. New York: Wiley.Google Scholar
  13. 13.
    Lu, Y., & Mohanty, S. (2001). Sensitivity analysis of a complex, proposed geologic waste disposal system using the Fourier amplitude sensitivity test method. Reliability Engineering & Systems Safety, 72, 275–291. doi: 10.1016/S0951-8320(01)00020-5.CrossRefGoogle Scholar
  14. 14.
    McKone, T. E. (1996). Alternative modeling approaches for contaminant fate in soils: uncertainty, variability and reliability. Reliability Engineering & Systems Safety, 54, 165–181. doi: 10.1016/S0951-8320(96)00073-7.CrossRefGoogle Scholar
  15. 15.
    Moschandreas, D. J., & Karuchit, S. (2002). Scenario-model-parameter: A new method of cumulative risk uncertainty analysis. Environment International, 28, 247–261. doi: 10.1016/S0160-4120(02)00025-9.CrossRefGoogle Scholar
  16. 16.
    Provincia di Milano, GIUDITTA© (v3.0). (2002). Gestione Informatizzata DI Tollerabilità Ambientale.Google Scholar
  17. 17.
    Rabitz, H., Alis, O. F., Shorter, J., & Shim, K. (1999). Efficient input-output model representations. Computer Physics Communications, 117, 11–20. doi: 10.1016/S0010-4655(98)00152-0.CrossRefGoogle Scholar
  18. 18.
    Saltelli, A., Chan, K., & Scott, M. (Eds.). (2000). Sensitivity analysis. New York: Wiley.Google Scholar
  19. 19.
    Saltelli, A., Tarantola, S., & Campolongo, F. (2000). Sensitivity analysis as an ingredient for modeling. Statistical Science, 13, 377–395.Google Scholar
  20. 20.
    Saltelli, A., Tarantola, S., & Chan, K. (1999). A quantitative, model independent method for global sensitivity analysis of model output. Technometrics, 41, 39–56. doi: 10.2307/1270993.CrossRefGoogle Scholar
  21. 21.
    Sobol, I. M. (1993). Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407–414.Google Scholar
  22. 22.
    Travis, C. C., Obenshain, K. R., Regens, J. L., & Whipple, C. G. (2001). Limitations of multimedia model for use in environmental decision making. Environmental Monitoring and Assessment, 71, 51–60. doi: 10.1023/A:1011691628387.CrossRefGoogle Scholar
  23. 23.
    US Environmental Protection Agency (EPA). (1992). Guidelines for exposure assessment. EPA/600/Z-92/001, May.Google Scholar
  24. 24.
    US Environmental Protection Agency (1995). Use of Risk-Based Decision-Making in UST Corrective Action Programs, US OSWER, Directive 9610.17, March.Google Scholar
  25. 25.
    US Environmental Protection Agency (EPA). (1996). Soil screening guidance: Technical background document, EPA/540/R-95/128, May.Google Scholar
  26. 26.
    US Environmental Protection Agency (EPA). (1997). Guiding principles for Monte Carlo analysis. EPA/630/R-97/001, March.Google Scholar
  27. 27.
    US Environmental Protection Agency (EPA). (2001). Process for conducting probabilistic risk assessment. Risk Assessment Guidance for Superfund (RAGS), vol. III-Part A, EPA/540/R-02/002, December.Google Scholar
  28. 28.
    US Environmental Protection Agency (EPA). (2003). Example exposure scenarios. National Center for Environmental Assessment, Washington, DC; EPA/600/R-03/036.Google Scholar
  29. 29.
    Waterloo Hydrogeologic. (2003). Risk workbench (v4.03).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Italian National Agency for New Technology, Energy and Environment Technical Scientific Division for the Development of Environmental Technologies and Protection StrategiesENEAPorticiItaly
  2. 2.Division of Environmental Technologies and Protection StrategiesENEA Portici Research CenterPorticiItaly

Personalised recommendations