Skip to main content

Advertisement

Log in

Managing Uncertainty in Risk-Based Corrective Action Design: Global Sensitivity Analysis of Contaminant Fate and Exposure Models Used in the Dose Assessment

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A variance-based global sensitivity analysis (GSA) was applied to the dose assessment model used in the risk-based corrective action methodology of environmental risk analysis to identify key sources of variability and uncertainty and quantify the relative contribution of these sources to the variance of estimated dose. GSA was performed applying extended Fourier amplitude sensitivity test technique. The soil-to-air contaminant transport pathway within an inhalation exposure scenario was addressed. Three persistent semi-volatile carcinogenic chemicals, including polychlorinated biphenyls, benzo(a)pyrene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin, were chosen as contaminants of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agenzia per la protezione dell'ambiente e per i servizi tecnici (APAT). (2002). ROME (v2.1) – ReasOnable Maximum Exposure.

  2. Archer, G. E. B., Saltelli, A., & Sobol, I. M. (1997). Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58, 99–120. doi:10.1080/00949659708811825.

    Article  Google Scholar 

  3. Bennett, D. H., Kastenberg, W. E., & McKone, T. E. (1999). A multimedia, multiple pathway risk assessment of atrazine: The impact of age differenziated exposure including joint uncertainty and variability. Reliability Engineering & Systems Safety, 63, 185–198. doi:10.1016/S0951-8320(98)00046-5.

    Article  Google Scholar 

  4. Connor, J. A., Newell, C. J. & Malander, M. W. (1996). Parameter estimation guidelines for Risk-Based Corrective Action (RBCA) modeling. In Proc. 3rd Conf. on Petroleum Hydrocarbons (NGWA) (p. 19). Houston, TX.

  5. Cousins, I. T., Beck, A. J., & Jones, K. C. (1999). A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface. Science of the Total Environment, 228, 5–24. doi:10.1016/S0048-9697(99)00015-7.

    Article  CAS  Google Scholar 

  6. Cukier, R. I., Levine, H. B., & Shuler, K. E. (1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26, 1–42. doi:10.1016/0021-9991(78)90097-9.

    Article  Google Scholar 

  7. E 1739-95 Standard guide for Risk-Based Corrective Action Applied at petroleum release sites. (2001). Annual Book of ASTM Standards vol. 11.04 (pp. 908–959). West Conshohocken, PA: American Society for Testing and Materials.

  8. E 2081-00 Standard guide for Risk-Based Corrective Action. (2001). Annual Book of ASTM Standards vol. 11.04 (pp. 1164–1257). West Conshohocken, PA: American Society for Testing and Materials.

  9. Groundwater Services, Inc. (2003). RBCA ToolKit for chemical releases (v1.3b).

  10. Hertwich, E. G., McKone, T. E., & Peace, W. S. (2000). A systematic uncertainty analysis of an evaluative fate and exposure models. Risk Analysis, 20, 439–454. doi:10.1111/0272-4332.204043.

    Article  CAS  Google Scholar 

  11. Joint Research Center of the European Commission. (2003). Simulation environment for uncertainty and sensitivity analysis. SIMLAB (v2.2), Ispra (VA), Italy.

  12. Jury, W. A., Gardner, W. R., & Gardner,W. H. (Eds.) (1991). Soil physics, 5th edn. New York: Wiley.

  13. Lu, Y., & Mohanty, S. (2001). Sensitivity analysis of a complex, proposed geologic waste disposal system using the Fourier amplitude sensitivity test method. Reliability Engineering & Systems Safety, 72, 275–291. doi:10.1016/S0951-8320(01)00020-5.

    Article  Google Scholar 

  14. McKone, T. E. (1996). Alternative modeling approaches for contaminant fate in soils: uncertainty, variability and reliability. Reliability Engineering & Systems Safety, 54, 165–181. doi:10.1016/S0951-8320(96)00073-7.

    Article  Google Scholar 

  15. Moschandreas, D. J., & Karuchit, S. (2002). Scenario-model-parameter: A new method of cumulative risk uncertainty analysis. Environment International, 28, 247–261. doi:10.1016/S0160-4120(02)00025-9.

    Article  CAS  Google Scholar 

  16. Provincia di Milano, GIUDITTA© (v3.0). (2002). Gestione Informatizzata DI Tollerabilità Ambientale.

  17. Rabitz, H., Alis, O. F., Shorter, J., & Shim, K. (1999). Efficient input-output model representations. Computer Physics Communications, 117, 11–20. doi:10.1016/S0010-4655(98)00152-0.

    Article  CAS  Google Scholar 

  18. Saltelli, A., Chan, K., & Scott, M. (Eds.). (2000). Sensitivity analysis. New York: Wiley.

  19. Saltelli, A., Tarantola, S., & Campolongo, F. (2000). Sensitivity analysis as an ingredient for modeling. Statistical Science, 13, 377–395.

    Google Scholar 

  20. Saltelli, A., Tarantola, S., & Chan, K. (1999). A quantitative, model independent method for global sensitivity analysis of model output. Technometrics, 41, 39–56. doi:10.2307/1270993.

    Article  Google Scholar 

  21. Sobol, I. M. (1993). Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407–414.

    Google Scholar 

  22. Travis, C. C., Obenshain, K. R., Regens, J. L., & Whipple, C. G. (2001). Limitations of multimedia model for use in environmental decision making. Environmental Monitoring and Assessment, 71, 51–60. doi:10.1023/A:1011691628387.

    Article  CAS  Google Scholar 

  23. US Environmental Protection Agency (EPA). (1992). Guidelines for exposure assessment. EPA/600/Z-92/001, May.

  24. US Environmental Protection Agency (1995). Use of Risk-Based Decision-Making in UST Corrective Action Programs, US OSWER, Directive 9610.17, March.

  25. US Environmental Protection Agency (EPA). (1996). Soil screening guidance: Technical background document, EPA/540/R-95/128, May.

  26. US Environmental Protection Agency (EPA). (1997). Guiding principles for Monte Carlo analysis. EPA/630/R-97/001, March.

  27. US Environmental Protection Agency (EPA). (2001). Process for conducting probabilistic risk assessment. Risk Assessment Guidance for Superfund (RAGS), vol. III-Part A, EPA/540/R-02/002, December.

  28. US Environmental Protection Agency (EPA). (2003). Example exposure scenarios. National Center for Environmental Assessment, Washington, DC; EPA/600/R-03/036.

  29. Waterloo Hydrogeologic. (2003). Risk workbench (v4.03).

Download references

Acknowledgments

The authors would like to acknowledge the support, the assistance, and the insights of Carlo Cremisini, Head of Section for Environmental Evaluation Methods Development of ENEA. We also wish to thank Giuseppe Di Landa who contributed to the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Avagliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avagliano, S., Parrella, L. Managing Uncertainty in Risk-Based Corrective Action Design: Global Sensitivity Analysis of Contaminant Fate and Exposure Models Used in the Dose Assessment. Environ Model Assess 14, 47–57 (2009). https://doi.org/10.1007/s10666-008-9163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9163-5

Keywords

Navigation