Environmental Modeling & Assessment

, Volume 14, Issue 3, pp 405–410 | Cite as

The Avoidance Responses of Daphnia magna to the Exposure of Organophosphorus Pesticides in an On-Line Biomonitoring System

  • Zong-Ming Ren
  • Zhi-Liang Li
  • Jin-Miao Zha
  • Kai-feng Rao
  • Mei Ma
  • Zijian Wang
  • Rong-Shu Fu


In this study, avoidance behavior of the freshwater cladoceran Daphnia magna Straus was used as indicator to assess the early stress of accidental organophosphorus pesticide (OP) contamination. The movement behavior was detected by a multi-species biomonitoring system. There was obvious concentration–response relationship between the OP stress and the behavioral response even at sublethal exposure. A rising OP stress resulted in a significant decrease of response time to escape (RTE; p<0.05). In comparison of different OPs, it was found that there was a power regression between RTE and the toxic unit of OPs. Therefore, the avoidance behavior of D. magna was a sensitive indicator of sublethal OP stress, and the power relationship could be used to predict the early warning thresholds of more OPs in the on-line biomonitoring system.


Avoidance behavior Daphnia magna Organophosphorus pesticide (OP) Response time to escape (RTE) Toxic unit (TU) 



The work was supported by Natural Science Foundation of China (20621703, 20337020) and Natural Science Foundation of Beijing Municipality (8061004).


  1. 1.
    APHA. (2001). Standard methods for the examination of water and wastewater, 20th edition. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, DC 20005.Google Scholar
  2. 2.
    Capowiez, Y., & Berard, A. (2006). Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotoxicology and Environmental Safety, 64, 198–206.CrossRefGoogle Scholar
  3. 3.
    Christopher, M. T., David, J. S., & Matthew, J. W., (2001). Fluorinated phosphorus compounds: Part 4. A lack of anticholinesterase activity for four tris (fluoroalkyl) phosphates. Journal of Fluorine Chemistry, 107, 155–158.CrossRefGoogle Scholar
  4. 4.
    Dortland, R. J. (1980). Toxicological evaluation of parathion and azinphosmethyl in freshwater model ecosystems. Agricultural Research Report, 898, 1–112.Google Scholar
  5. 5.
    Drastic, V., & Kubečka, J. (2005). Fish avoidance of acoustic survey boat in shallow waters. Fisheries Research, 72, 219–228.CrossRefGoogle Scholar
  6. 6.
    Duquesne, S. (2006). Effects of an organophosphate on Daphnia magna at suborganismal and organismal levels: Implications for population dynamics. Ecotoxicology and Environmental Safety, 65, 145–150.CrossRefGoogle Scholar
  7. 7.
    Erik, H., Finn-Arne, W., Joachim, S., Svante, W., & Holger, U. (2005). Avoidance behavior and brain monoamines in fish. Brain Research, 1032, 104–110.CrossRefGoogle Scholar
  8. 8.
    Eriksson Wiklund, A.-K., Börjesson, T., & Wiklund, S. J. (2006). Avoidance response of sediment living amphipods to zinc pyrithione as a measure of sediment toxicity. Marine Pollution Bulletin, 52, 96–99.CrossRefGoogle Scholar
  9. 9.
    Farr, A. J., Chabot, C. C., & Taylor, D. H. (1995). Behavioral avoidance of fluoranthene by fathead minnows (Pimephales promelas). Neurotoxicology and Teratology, 17, 265–271.CrossRefGoogle Scholar
  10. 10.
    Gerhardt, A., Janssens, B., Mo, Z., Wang, C., Yang, M., & Wang, Z. (2002). Short-term responses of Oryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea: Palaemonidae) to municipal and pharmaceutical wastewater in Beijing, China: survival, behavior, biochemical biomarkers. Chemosphere, 47, 35–47.CrossRefGoogle Scholar
  11. 11.
    Gray, S., & Roff, D. A. (2000). Behaviour plasticity without learning: phenotypic and genetic variation of naive Daphnia in an ecological trade-off. Animal Behaviour, 59, 929–941.CrossRefGoogle Scholar
  12. 12.
    Guilhermino, L., Lopes, M. C., Carvalho, A. P., & Soares, A. M. V. M. (1996). Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere, 32, 727–738.CrossRefGoogle Scholar
  13. 13.
    Heupel, K. (2002). Avoidance response of different collembolan species to Betanal. European Journal of Soil Biology, 38, 273–276.CrossRefGoogle Scholar
  14. 14.
    Hofmann, H. A., & Schildberger, K. (2001). Assessment of strength and willingness to fight during aggressive encounters in crickets. Animal Behavior, 62, 337–348.CrossRefGoogle Scholar
  15. 15.
    ISO. (1996). Water Quality-Determination of the acute lethal toxicity of substances to a freshwater fish [Brachdanio rerio (Hamilton-Buchanan), Teleostei, Cyprinidae]—Part 3: Flow-through method. ISO/ DIS 7346/3.Google Scholar
  16. 16.
    Jury, S. H., Kinnison, M. T., Huntting, H. W., & Watson, W. H. (1994). The behavior of lobsters in response to reduced salinity. Journal of Experimental Marine Biology and Ecology, 180, 23–37.CrossRefGoogle Scholar
  17. 17.
    Kikuchi, M., Sasaki, Y., & Wakabayashi, M. (2000). Screening of organophosphate insecticide pollution in water using Daphnia magna. Ecotoxicology and Environmental Safety, 47, 239–245.CrossRefGoogle Scholar
  18. 18.
    Lampert, W. (1993). Phenotypic plasticity of the size at first reproduction in Daphnia: The importance of material size. Ecology, 74, 1455–1466.CrossRefGoogle Scholar
  19. 19.
    Maltby, L., Kedwards, T. J., Forbes, V. E., Grasman, K., Kammenga, J. E., Munns, W. R., et al. (2001). Linking individual-level responses and population-level consequences. In D. J. Baird & G. A. Burton Jr. (Eds.) Ecological variability: Separating natural from anthropogenic causes of ecosystem impairment (pp. 27–82). Pensacola, FL, USA: SETAC.Google Scholar
  20. 20.
    Ren, Z. M., Ma, M., & Wang, Z. J. (2006). On-line biomonitoring of accidental drinking water organophosphorous pesticides contamination. Water & Wastewater Engineering, 32, 17–20.Google Scholar
  21. 21.
    Reynaldi, S., Duquesne, S., Jung, K., & Liess, M. (2006). Linking feeding activity and maturation of Daphnia magna following short-term exposure to fenvalerate. Environmental Toxicology and Chemistry, 25, 1826–1830.CrossRefGoogle Scholar
  22. 22.
    Riddell, D. J., Culp, J. M., & Baird, D. J. (2005). Behavioral responses to sublethal cadmium exposure within an experimental aquatic food web. Environmental Toxicology and Chemistry, 24, 431–441.CrossRefGoogle Scholar
  23. 23.
    Rosa, E., Barata, C., Damasio, J., Bosch, M. P., & Guerrero, A. (2006). Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus. Aquatic Toxicology, 79, 296–303.CrossRefGoogle Scholar
  24. 24.
    Sager, D. R., Hocutt, C. H., & Stauffer Jr., J. R. (2000). Avoidance behavior of Morone americana, Leiostomus xanthurus and Brevoortia tyrannus to strobe light as a method of impingement mitigation. Environmental Science & Policy, 3, 393–403.CrossRefGoogle Scholar
  25. 25.
    Sandbacka, M., Christianson, I., & Isomaa, B. (2000). The acute toxicity of surfactants on fish cells, Daphnia magna and fish—A comparative study. Toxicology in Vitro, 14, 61–68.CrossRefGoogle Scholar
  26. 26.
    Scarfe, A. D., Jones, K. A., Steele, C. W., Kleerekoper, H., & Corbett, M. (1983). Locomotor behavior of four marine teleosts in response to sublethal copper exposure. Aquatic Toxicology, 2, 335–353.CrossRefGoogle Scholar
  27. 27.
    Selye, H. (1973). The evolution of the stress concept. American Scientist, 61, 692–699.Google Scholar
  28. 28.
    Steele, C. W., Strickler-Shaw, S., & Taylor, D. H. (1989). Behavior of tadpoles of the bullfrog, Rana catesbeiana, in response to sublethal lead exposure. Aquatic Toxicology, 14, 331–343.CrossRefGoogle Scholar
  29. 29.
    Sturm, A., & Hansen, P. D. (1999). Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicology and Environmental Safety, 42, 9–15.CrossRefGoogle Scholar
  30. 30.
    Untersteiner, H., Kahapka, J., & Kaiser, H. (2003). Behavioral response of the cladoceran Daphnia magna STRAUS to sublethal Copper stress—validation by image analysis. Aquatic Toxicology, 65, 435–442.Google Scholar
  31. 31.
    USEPA. (2000). Pesticide Ecotoxicity Database [Formerly: Environmental Effects Database (EEDB)]. Office of Pesticide Programs. Environmental Fate and Effects Division, Washington, DC 20005.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Zong-Ming Ren
    • 1
  • Zhi-Liang Li
    • 1
    • 2
  • Jin-Miao Zha
    • 1
  • Kai-feng Rao
    • 1
  • Mei Ma
    • 1
  • Zijian Wang
    • 1
  • Rong-Shu Fu
    • 2
  1. 1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental ScienceChinese Academy of ScienceBeijingChina
  2. 2.College of Life ScienceShandong Normal UniversityJinanChina

Personalised recommendations