Environmental Modeling & Assessment

, Volume 13, Issue 4, pp 553–565 | Cite as

Regression Analysis Model Applied to Biomonitoring Studies

  • Marcelo Enrique Conti
  • Domenico Cucina
  • Mauro Mecozzi


A regression model is proposed for studying the relationship between trace metals concentrations and weights of individuals of Monodonta turbinata (Born), a gastropod mollusc used as a trace metal biomonitor of marine coastal areas. The model herein presented was developed including sites as reference factors and showed very good correlations. The prevision model of contamination gave good results for this kind of pollutants, and it can be used as a tool for monitoring programmes.


Biomonitoring Gastropod molluscs Monodonta turbinata Regression models Trace metals 


  1. 1.
    Blackmore, G. (2001). Interspecific variation in heavy metal body concentrations in Hong Kong marine invertebrates. Environmental Pollution, 114, 303–311.CrossRefGoogle Scholar
  2. 2.
    Boyden, C. R. (1974). Trace element content and body size in molluscs. Nature, 251, 311–314.CrossRefGoogle Scholar
  3. 3.
    Boyden, C. R. (1977). Effects of size upon metal content of shellfish. Journal of the Marine Biological Association of the United Kingdom, 57, 675–714.Google Scholar
  4. 4.
    Campanella, L., Conti, M. E., Cubadda, F., & Sucapane, C. (2001). Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111, 117–126.CrossRefGoogle Scholar
  5. 5.
    Catsiki, V. A., Vakalopoulou, C., Moraitou-Apostolopoulou, M., & Verriopoulos, G. (1993). Monodonta Turbinata (Born); toxicity and bioaccumulation of Cu and CuCr mixtures. Toxicological and Environmental Chemistry, 37, 173–184.CrossRefGoogle Scholar
  6. 6.
    Conti, M. E. (2002). Il monitoraggio biologico della qualità ambientale. pp. 180, Rome: SEAM. ISBN 88-8179-411-x.Google Scholar
  7. 7.
    Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: Lichens as bioindicators of air pollution assessment – A review. Environmental Pollution, 114, 471–492.CrossRefGoogle Scholar
  8. 8.
    Conti, M. E., & Cecchetti, G. (2003). A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. Environmental Research, 93, 99–112.CrossRefGoogle Scholar
  9. 9.
    Conti, M. E., Iacobucci, M., & Cecchetti, G. (2004). The biomonitoring approach as a tool of trace metal assessment in an uncontaminated marine ecosystem: The island of Ustica (Sicily, Italy). In: J. F. Martin-Duque, C. A. Brebbia, A. E. Godfrey, & J. R. Díaz de Terán (Eds.), Monitoring, simulation and remediation of the geological environment (pp. 335–344). Boston: WIT.Google Scholar
  10. 10.
    Cubadda, F., Conti, M. E., & Campanella, L. (2001). Size-dependent concentrations of trace metals in four Mediterranean gastropods. Chemosphere, 45, 561–569.CrossRefGoogle Scholar
  11. 11.
    Evans, D. E., Dodoo, D. K., & Hanson, P. J. (1993). Trace element concentrations in fish livers: Implications of variations with fish size in pollution monitoring. Marine Pollution Bulletin, 26, 329–334.CrossRefGoogle Scholar
  12. 12.
    Fabbris, L. (1997). Statistica multivariata. Milano: McGraw-Hill. ISBN 88 386 0765–6.Google Scholar
  13. 13.
    Fox, J. (1997). Applied regression analysis, linear models, and related methods. Thousand Oaks, CA: Sage. ISBN 0-8039-4540-X, 1997.Google Scholar
  14. 14.
    Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73–101.CrossRefGoogle Scholar
  15. 15.
    Laskowski, R., & Hopkin, S. P. (1996). Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): Implications for predators. Environmental Pollution, 91, 289–297.CrossRefGoogle Scholar
  16. 16.
    Leung, K. M. Y., & Furness, R. W. (1999) Effects of animal size on concentrations of metallothionein and metals in periwinkles Littorina littorea collected from the Firth of Clyde, Scotland. Marine Pollution Bulletin, 39, 126–136.CrossRefGoogle Scholar
  17. 17.
    Meloun, M., Militky, J., Hill, A., & Brereton, R. G. (2002). Crucial problems in regression modelling and their solutions. Analyst, 127, 433–450.CrossRefGoogle Scholar
  18. 18.
    Miller, J. M. (1993). Outliers in experimental data and their treatment. Analyst, 118, 455–461.CrossRefGoogle Scholar
  19. 19.
    O’Leary, C., & Breen, J. (1997). Metal levels in seven species of molluscs and seaweeds from the Shannon Estuary. Biology and Environment: Proceedings of the Royal Irish Academy, 97B(2), 121–132.Google Scholar
  20. 20.
    Ozretic, B., Kranjnovic-Ozretic, M., Santin, J., Medjugorac, B., & Kras, M. (1990). As, Cd, Pb, Hg in benthic animals from Kvarner-Rijeca region, Yugoslavia. Marine Pollution Bulletin, 21, 595–598.CrossRefGoogle Scholar
  21. 21.
    Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120, 497–507.CrossRefGoogle Scholar
  22. 22.
    Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.Google Scholar
  23. 23.
    Soto, M., Ireland, M. P., & Marigòmez, I. (1997). The contribution of metal/shell-weight index in target-tissue to metal body burden in sentinel marine molluscs. 1. Littorina littorea. Science of the Total Environment, 198, 135–147.CrossRefGoogle Scholar
  24. 24.
    Stefanski, L. A. (1991). A note on high-breakdown estimators. Statistics and Probability Letters, 11, 353–358.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Marcelo Enrique Conti
    • 1
  • Domenico Cucina
    • 1
  • Mauro Mecozzi
    • 2
  1. 1.SPES Development Studies Research CentreUniversità “La Sapienza”RomeItaly
  2. 2.Istituto Centrale per la Ricerca Scientifica e Tecnologica Applicata al MareRomeItaly

Personalised recommendations