Environmental Modeling & Assessment

, Volume 13, Issue 2, pp 221–242 | Cite as

Development and Parameterization of a Rain- and Fire-driven Model for Exploring Elephant Effects in African Savannas



We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree–grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation.


Elephants Herbivory Loxodonta africana Plant demography Spatial modeling Tree–grass coexistence Woody plants 



We thank P. Cross, K. Duffy, J. du Toit, S. Higgins, J. Lloyd-Smith, D. McCullough, T. O’Connor, N. Owen-Smith, J. Redfern, S. Ryan, R. Scholes, C. Wilmers, and an anonymous reviewer for valuable comments on an earlier draft of this paper. The authors thank South African National Parks and the Scientific Services Division of the KNP for facilitating parts of this study. PWJB also thanks the Mammal Research Institute, University of Pretoria, for use of their facilities. The work was supported by a Foreign Language and Area Studies Fellowship and Andrew and Mary Rocca Travel Scholarship (PWJB) and by NSF grant DEB-0090323 and James S. McDonnell Foundation 21st Century Science Initiative Grant (WMG).


  1. 1.
    Addy, J. E. (1993). Impact of elephant induced vegetation change on the status of the Chobe bushbuck along the Chobe River, northern Botswana. M.Sc. thesis, Johannesburg, South Africa: University of the Witwatersrand.Google Scholar
  2. 2.
    Bar-David, S., Saltz, D., & Dayan, T. (2005). Predicting the spatial dynamics of a reintroduced population: The Persian fallow deer. Ecological Applications, 15, 1833–1846.Google Scholar
  3. 3.
    Barnes, R. F. W. (1985). Woodland changes in Ruaha National Park (Tanzania) between 1976 and 1982. African Journal of Ecology, 23, 215–221.Google Scholar
  4. 4.
    Barnes, R. F. W., Barnes, K. L. K. L., & Kapela, E. B. (1994). The long-term impact of elephant browsing on baobab trees at Msembe, Ruaha National Park, Tanzania. African Journal of Ecology, 32, 177–184.Google Scholar
  5. 5.
    Baxter, P. W. J., & Getz, W. M. (2005). A model-framed evaluation of elephant effects on tree and fire dynamics in African savannas. Ecological Applications, 15, 1331–1341.Google Scholar
  6. 6.
    Behnke, R. H., Jr., & Scoones, I. (1993). Rethinking range ecology. In R. H. Behnke, Jr., I. Scoones, & C. Kerven (Eds.), Range ecology at disequilibrium: New models of natural variability and pastoral adaptation in African savannas (pp. 1–30). England, UK: Overseas Development Institute, London.Google Scholar
  7. 7.
    Bell, R. H. V. (1982). The effect of soil nutrient availability on community structure in African ecosystems. In B. J. Huntley & B. H. Walker (Eds.), Ecology of tropical savannas (pp. 193–216). Berlin, Germany: Springer-Verlag.Google Scholar
  8. 8.
    Bell, R. H. V. (1984). Notes on elephant–woodland interactions. In D. H. M. Cumming & P. Jackson (Eds.), The status and conservation of Africa’s elephants and rhinos (pp. 98–103). Switzerland: IUCN, Gland.Google Scholar
  9. 9.
    Belsky, A. J. (1990). Tree/grass ratios in East African savannas: A comparison of existing models. Journal of Biogeography, 17, 483–489.Google Scholar
  10. 10.
    Belsky, A. J. (1994). Influences of trees on savanna productivity: Tests of shade, nutrients and tree–grass competition. Ecology, 75, 922–932.Google Scholar
  11. 11.
    Ben-Shahar, R. (1993). Patterns of elephant damage to vegetation in northern Botswana. Biological Conservation, 65, 249–256.Google Scholar
  12. 12.
    Ben-Shahar, R. (1996). Do elephants over-utilize mopane woodlands in northern Botswana? Journal of Tropical Ecology, 12, 505–515.CrossRefGoogle Scholar
  13. 13.
    Ben-Shahar, R. (1996). Woodland dynamics under the influence of elephants and fire in northern Botswana. Vegetatio, 123, 153–163.Google Scholar
  14. 14.
    Ben-Shahar, R. (1998). Changes in structure of savanna woodlands in northern Botswana following the impacts of elephants and fire. Plant Ecology, 136, 189–194.Google Scholar
  15. 15.
    Bond, W. J., & Van Wilgen, B. W. (1996). Fire and plants. England, UK: Chapman and Hall, London.Google Scholar
  16. 16.
    Bond, W. J., & Midgeley, J. J. (2001). Ecology of sprouting in woody plants: The persistence niche. Trends in Ecology & Evolution, 16, 45–51.Google Scholar
  17. 17.
    Boone, R. B., Coughenour, M. B., Galvin, K. A., & Ellis, J. E. (2002). Addressing management questions for Ngorongoro Conservation Area, Tanzania, using the SAVANNA modelling system. African Journal of Ecology, 40, 138–150.Google Scholar
  18. 18.
    Buechner, H. K., & Dawkins, H. C. (1961). Vegetation change induced by elephants and fire in Murchison Falls National Park, Uganda. Ecology, 42, 752–766.Google Scholar
  19. 19.
    Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation. Sunderland, MA, USA: Sinauer Associates.Google Scholar
  20. 20.
    Caughley, G. (1976). The elephant problem—an alternative hypothesis. East African Wildlife Journal, 14, 265–283.Google Scholar
  21. 21.
    Caylor, K. K., & Shugart, H. H. (2004). Simulated productivity of heterogeneous patches in southern African savanna landscapes using a canopy productivity model. Landscape Ecology, 19, 401–415.Google Scholar
  22. 22.
    Croze, H. (1974). The Seronera bull problem. I. The elephants. East African Wildlife Journal, 12, 1–27.Google Scholar
  23. 23.
    Croze, H. (1974). The Seronera bull problem. II. The trees. East African Wildlife Journal, 12, 29–47.Google Scholar
  24. 24.
    Cumming, D. H. M., Fenton, M. B., Rautenbach, I. L., Taylor, R. D., Cumming, G. S., Cumming, M. S., et al. (1997). Elephants, woodlands and biodiversity in southern Africa. South African Journal of Science, 93, 231–236.Google Scholar
  25. 25.
    Desmet, P. G., Shackleton, C. M., & Robinson, E. R. (1996). The population dynamics and life-history attributes of a Pterocarpus angolensis DC. population in the Northern Province, South Africa. South African Journal of Botany, 62, 160–166.Google Scholar
  26. 26.
    Du Toit, J. T., Bryant, J. P., & Frisby, K. (1990). Regrowth and palatability of Acacia shoots following pruning by African savanna browsers. Ecology, 71, 149–154.Google Scholar
  27. 27.
    Dublin, H. T. (1995). Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire, and other factors. In A. R. E. Sinclair & P. Arcese (Eds.), Serengeti II: Dynamics, management and conservation of an ecosystem (pp. 71–90). Chicago, IL, USA: University of Chicago Press.Google Scholar
  28. 28.
    Dublin, H. T., Sinclair, A. R. E., & McGlade, J. (1990). Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. Journal of Animal Ecology, 59, 1147–1164.Google Scholar
  29. 29.
    Duffy, K. J., Bajić, V. B., & Page, B. R. (2000). Analysis and dynamics of an elephant–tree ecosystem having abundant and rare tree species. Systems Analysis Modelling Simulation, 38, 663–676.Google Scholar
  30. 30.
    Duffy, K. J., Page, B. R., Swart, J. H., & Bajić, V. B. (1999). Realistic parameter assessment for a well known elephant–tree ecosystem model reveals that limit cycles are unlikely. Ecological Modelling, 121, 115–125.Google Scholar
  31. 31.
    Engelbrecht, A. H. (1979). Olifantinvloed op Acacia nigrescens—bome in ‘n gedeelte van die Punda Milia-Sandveld van die Nasionale Krugerwildtuin. Koedoe, 22, 29–37.Google Scholar
  32. 32.
    Field, C. R. (1971). Elephant ecology in the Queen Elizabeth National Park, Uganda. East African Wildlife Journal, 9, 99–123.Google Scholar
  33. 33.
    Fowler, C. W., & Smith, T. (1973). Characterizing stable populations: An application to the African elephant population. Journal of Wildlife Management, 37, 513–523.Google Scholar
  34. 34.
    Frost P. G. H., & Robertson, P. (1987). The ecological effects of fire in savannas. In B.H. Walker (Ed.), Determinants of tropical savannas (pp. 93–140). Berlin, Germany: Springer-Verlag.Google Scholar
  35. 35.
    Gadd, M. E., Young, T. P., & Palmer, T. M. (2001). Effects of simulated shoot and leaf herbivory on vegetative growth and plant defense in Acacia drepanolobium. Oikos, 92, 515–521.Google Scholar
  36. 36.
    Gertenbach, W. P. D. (1980). Rainfall patterns in the Kruger National Park. Koedoe, 23, 35–43.Google Scholar
  37. 37.
    Getz, W. M. (1996). A hypothesis regarding the abruptness of density dependence and the growth rate of populations. Ecology, 77, 2014–2026.Google Scholar
  38. 38.
    Getz, W. M., & Haight, R. G. (1989). Population harvesting: Demographic models of fish, forest, and animal resources. Princeton, NJ, USA: Princeton University Press.Google Scholar
  39. 39.
    Gignoux, J., Clobert, J., & Menaut, J. C. (1997). Alternative fire resistance strategies in savanna trees. Oecologia, 110, 576–583.Google Scholar
  40. 40.
    Guy, P. R. (1976). The feeding behaviour of elephant (Loxodonta africana) in the Sengwa area, Rhodesia. South African Journal of Wildlife Research, 6, 55–63.Google Scholar
  41. 41.
    Herremans, M. (1995). Effects of woodland modification by African elephant Loxodonta africana on bird diversity in northern Botswana. Ecography, 18, 440–454.Google Scholar
  42. 42.
    Higgins, S. I., Bond, W. J., & Trollope, W. S. W. (2000). Fire, resprouting and variability: A recipe for grass-tree coexistence in savanna. Journal of Ecology, 88, 213–229.Google Scholar
  43. 43.
    Hiscocks, K. (1999). The impact of an increasing elephant population on the woody vegetation in southern Sabi Sand Wildtuin, South Africa. Koedoe, 42, 47–55.Google Scholar
  44. 44.
    Hoare, R. E. (1999). Determinants of human–elephant conflict in a land-use mosaic. Journal of Applied Ecology, 36, 689–700.Google Scholar
  45. 45.
    Hochberg, M. E., Menaut, J. C., & Gignoux, J. (1994). The influences of tree biology and fire in the spatial structure of the West African savannah. Journal of Ecology, 82, 217–226.Google Scholar
  46. 46.
    Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Canadian Entomologist, 91, 385–398.CrossRefGoogle Scholar
  47. 47.
    Illius, A. W., & O’Connor, T. G. (2000). Resource heterogeneity and ungulate population dynamics. Oikos, 89, 283–294.Google Scholar
  48. 48.
    Jachmann, H., & Bell, R. H. V. (1985). Utilization by elephants of the Brachystegia woodlands of the Kasungu National Park, Malawi. African Journal of Ecology, 23, 245–258.Google Scholar
  49. 49.
    Jachmann, H., & Croes, T. (1991). Effects of browsing by elephants on the Combretum/Terminalia woodland at the Nazinga Game Ranch, Burkina Faso, West Africa. Biological Conservation, 57, 13–24.Google Scholar
  50. 50.
    Jacobs, O. S. (2001). An autecological study of the marula (Sclerocarya birrea) in the Kruger National Park with specific reference to the relative impact from elephants and fire. M.Sc. thesis, Pretoria, South Africa: University of Pretoria.Google Scholar
  51. 51.
    Jacobs, O. S., & Biggs, R. (2001). The effect of different fire treatments on the population structure and density of the marula, Sclerocarya birrea (A. Rich.) subsp. caffra (Sond.) kokwaro (Kokwaro and Gillet 1980) in the Kruger National Park. African Journal of Range and Forage Science, 18, 13–23.Google Scholar
  52. 52.
    Jarman, P. J. (1971). Diets of large mammals in the woodlands around Lake Kariba, Rhodesia. Oecologia, 8, 157–178.Google Scholar
  53. 53.
    Jeltsch, F., Milton, S. J., Dean, W. R. J., & van Rooyen, N. (1996). Tree spacing and coexistence in semiarid savannas. Journal of Ecology, 84, 583–595.Google Scholar
  54. 54.
    Jeltsch, F., Milton, S. J., Dean, W. R. J., van Rooyen, N., & Moloney, K. A. (1998). Modelling the impact of small-scale heterogeneities on tree–grass coexistence in semi-arid savannas. Journal of Ecology, 86, 780–793.Google Scholar
  55. 55.
    Jeltsch, F., Weber, G. E., & Grimm, V. (2000). Ecological buffering mechanisms in savannas: A unifying theory of long-term tree–grass coexistence. Plant Ecology, 161, 161–171.Google Scholar
  56. 56.
    Kalemera, M. C. (1989). Observations on feeding preference of elephants in the Acacia tortilis woodland of Lake Manyara National Park. African Journal of Ecology, 27, 325–333.Google Scholar
  57. 57.
    Kiker, G. A. (1998). Development and comparison of savanna ecosystem models to explore the concept of carrying capacity. Ph.D. thesis, Ithaca, NY, USA: Cornell University.Google Scholar
  58. 58.
    Knoop, W. T., & Walker, B. H. (1985). Interactions of woody and herbaceous vegetation in a southern African savanna. Journal of Ecology, 73, 235–253.Google Scholar
  59. 59.
    Laws, R. M. (1970). Elephants as agents of habitat and landscape change in East Africa. Oikos, 21, 1–15.Google Scholar
  60. 60.
    Laws, R. M., Parker I. S. C., & Johnstone, R. C. B. (1975). Elephants and their habitats: The ecology of elephants in North Bunyoro. Oxford, England, UK: Uganda, Clarendon Press.Google Scholar
  61. 61.
    Lawton, R. M., & Gough, M. (1970). Elephants or fire—which is to blame? Oryx, 10, 244–248.CrossRefGoogle Scholar
  62. 62.
    Lewis, D. M. (1986). Disturbance effects on elephant feeding: Evidence for compression in Luangwa Valley, Zambia. African Journal of Ecology, 24, 227–241.Google Scholar
  63. 63.
    Lewis, D. M. (1987). Elephant response to early burning in mopane woodland, Zambia. South African Journal of Wildlife Research, 17, 33–40.Google Scholar
  64. 64.
    Lewis, D. M. (1987). Fruiting patterns, seed germination, and distribution of Sclerocarya caffra in an elephant-inhabited woodland. Biotropica, 19, 50–56.Google Scholar
  65. 65.
    Lewis, D. M. (1991). Observations of tree growth, woodland structure and elephant damage on Colophospermum mopane in Luangwa Valley, Zambia. African Journal of Ecology, 29, 207–221.Google Scholar
  66. 66.
    Ludwig, J. A., Coughenour, M. B., Liedloff, A. C., & Dodd, R. (2001). Modelling the resilience of Australian savanna systems to grazing impacts. Environment International, 27, 167–172.Google Scholar
  67. 67.
    Mapaure, I., & Mhlanga, L. (2000). Patterns of elephant damage to Colophospermum mopane on selected islands in Lake Kariba, Zimbabwe. Kirkia, 17, 189–198.Google Scholar
  68. 68.
    Meissner, H. H., Spreeth, E. B., De Villiers, P. A., Pietersen, E. W., Hugo, T. A., & Terblanché, B. F. (1990). Quality of food and voluntary intake by elephant as measured by lignin index. South African Journal of Wildlife Research, 20, 104–110.Google Scholar
  69. 69.
    Menaut, J. C., Gignoux, J., Prado, C., & Clobert, J. (1990). Tree community dynamics in a humid savanna of the Côte-d’Ivoire: Modelling the effects of fire and competition with grass and neighbors. Journal of Biogeography, 17, 471–481.Google Scholar
  70. 70.
    Midgeley, J. J., McLean, P., Botha M., & Balfour, D. (2001). Why do some African thorn trees (Acacia spp.) have a flat-top: A grazer–plant mutualism hypothesis? African Journal of Ecology, 39, 226–228.Google Scholar
  71. 71.
    Mushove, P. T. (1993). Shoot/root growth relations as determinants of nursery rotation in Colophospermum mopane seedlings raised in containers. In G. D. Piearce & D. J. Gumbo (Eds.), The ecology and management of indigenous forests in southern Africa (pp. 221–225). Harare, Zimbabwe: Forestry Commission.Google Scholar
  72. 72.
    Mushove, P. T., & Makoni, J. T. (1993). Coppicing ability of Colophospermum mopane. In G. D. Piearce & D. J. Gumbo (Eds.), The ecology and management of indigenous forests in southern Africa (pp. 226–230). Harare, Zimbabwe: Forestry Commission.Google Scholar
  73. 73.
    Mwalyosi, R. B. B. (1987). Decline of Acacia tortilis in Lake Manyara National Park, Tanzania. African Journal of Ecology, 25, 51–53.Google Scholar
  74. 74.
    Nicholson, S. E. (1993). An overview of African rainfall fluctuations of the last decade. Journal of Climate, 6, 1463–1466.Google Scholar
  75. 75.
    Norton-Griffiths, M. (1979). The influence of grazing, browsing, and fire on the vegetation dynamics of the Serengeti. In A. R. E. Sinclair & M. Norton-Griffiths (Eds.), Serengeti: Dynamics of an ecosystem (pp. 310–352). Chicago, IL, USA: University of Chicago Press.Google Scholar
  76. 76.
    O’Connor, T. G. (1995). Acacia karroo invasion of grassland: Environmental and biotic effects influencing seedling emergence and establishment. Oecologia, 103, 214–223.Google Scholar
  77. 77.
    O’Connor, T. G. (1998). Impact of sustained drought on a semi-arid Colophospermum mopane savanna. African Journal of Range and Forage Science, 15, 83–91.Google Scholar
  78. 78.
    Owen-Smith, N. (1982). Factors influencing the consumption of plant products by large herbivores. In B. J. Huntley & B. H. Walker (Eds.), Ecology of tropical savannas (pp. 359–404). Berlin, Germany: Springer-Verlag.Google Scholar
  79. 79.
    Owen-Smith, R. N. (1988). Megaherbivores: The influence of very large body size on ecology. Cambridge, England, UK: Cambridge University Press.Google Scholar
  80. 80.
    Owen-Smith, N., & Danckwerts, J. E. (1997). Herbivory. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of southern Africa (pp. 397–420). Cambridge, England, UK: Cambridge University Press.Google Scholar
  81. 81.
    Pamo, E. T., & Tchamba, M. N. (2001). Elephants and vegetation change in the Sahelo-Soudanian region of Cameroon. Journal of Applied Ecology, 48, 243–253.Google Scholar
  82. 82.
    Pellew, R. A. P. (1983). The impacts of elephant, giraffe and fire upon the Acacia tortilis woodlands of the Serengeti. African Journal of Ecology, 21, 41–74.Google Scholar
  83. 83.
    Rutherford, M. C. (1981). Survival, regeneration and leaf biomass changes in woody plants following spring burns in Burkea africanaOchna pulchra savanna. Bothalia, 13, 531–552.Google Scholar
  84. 84.
    Rutherford, M. C. (1997). Categorization of biomes. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds), Vegetation of southern Africa (pp. 91–98). Cambridge, England, UK: Cambridge University Press.Google Scholar
  85. 85.
    Sankaran, M., Ratnam, J., & Hanan, N. P. (2004). Tree–grass coexistence in savannas revisited—insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters, 7, 480–490.Google Scholar
  86. 86.
    Scholes, R. J. (1985). Drought related grass, tree and herbivore mortality in a southern African savanna. In J. C. Tothill & J. J. Mott (Eds.), Ecology and management of the world’s savannas (pp. 350–353). Canberra, Australia: Commonwealth Agricultural Bureaux.Google Scholar
  87. 87.
    Scholes, R. J. (1997). Savanna. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds), Vegetation of southern Africa (pp. 258–277). Cambridge, England, UK: Cambridge University Press.Google Scholar
  88. 88.
    Scholes, R. J., & Archer, S. R. (1997). Tree–grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517–544.Google Scholar
  89. 89.
    Scholes, R. J., & Walker, B. H. (1993). An African savanna: Synthesis of the Nylsvley study. Cambridge, England, UK: Cambridge University Press.Google Scholar
  90. 90.
    Shackleton, C. M. (1997). The prediction of woody productivity in the savanna biome, South Africa. Ph.D. thesis, Johannesburg, South Africa: University of the Witwatersrand.Google Scholar
  91. 91.
    Silva, J. F. (1987). Responses of savannas to stress and disturbance: Species dynamics. In B. H. Walker (Ed.), Determinants of tropical savannas (pp. 141–156). Berlin, Germany: Springer-Verlag.Google Scholar
  92. 92.
    Smallie, J. J., & O’Connor, T. G. (2000). Elephant utilization of Colophospermum mopane: Possible benefits of hedging. African Journal of Ecology, 38, 1–9.Google Scholar
  93. 93.
    Smit, G. N., & Rethman, N. F. G. (1998). The influence of tree thinning on the reproduction dynamics of Colophospermum mopane. South African Journal of Botany, 64, 25–29.Google Scholar
  94. 94.
    Smith, T. M., & Goodman, P. S. (1986). The effect of competition on the structure and dynamics of Acacia savannas in southern Africa. Journal of Ecology, 74, 1031–1044.Google Scholar
  95. 95.
    Smith, T. M., & Shackleton, S. E. (1988). The effects of shading on the establishment and growth of Acacia tortilis seedlings. South African Journal of Botany, 54, 375–379.Google Scholar
  96. 96.
    Solbrig, O. T., Medina, E., & Silva, J. F. (1996). Determinants of tropical savannas. In O. T. Solbrig, E. Medina, & J. F. Silva (Eds), Biodiversity and savanna ecosystem processes (pp. 31–41). Berlin, Germany: Springer-Verlag.Google Scholar
  97. 97.
    Spinage, C. A., & Guinness, F. E. (1971). Tree survival in the absence of elephants in the Akagera National Park, Rwanda. Journal of Applied Ecology, 8, 723–728.Google Scholar
  98. 98.
    Starfield, A. M., & Bleloch, A. L. (1986). Building models for conservation and wildlife management. New York, USA: Macmillan, New York.Google Scholar
  99. 99.
    Starfield, A. M., Cumming, D. H. M., Taylor, R. D., & Quadling, M. S. (1993). A frame-based paradigm for dynamic ecosystem models. AI Applications, 7, 1–13.Google Scholar
  100. 100.
    Stokke, S., & Du Toit, J. T. (2000). Sex and size related differences in the dry season feeding patterns of elephants in Chobe National Park, Botswana. Ecography, 23, 70–80.Google Scholar
  101. 101.
    Swanepoel, C. M., & Swanepoel, S. M. (1986). Baobab damage by elephants in the middle Zambezi Valley, Zimbabwe. African Journal of Ecology, 24, 129–132.Google Scholar
  102. 102.
    Tafengenyasha, C. (1997). Tree loss in the Gonarezhou National Park (Zimbabwe) between 1970 and 1983. Journal of Environmental Management, 49, 355–366.Google Scholar
  103. 103.
    Thomson, P. J. (1975). The role of elephants, fire and other agents in the decline of a Brachystegia boehmii woodland. Journal of the Southern African Wildlife Management Association, 5, 11–18.Google Scholar
  104. 104.
    Trollope, W. S. W. (1974). Role of fire in preventing bush encroachment in the eastern Cape. Proceedings of the Grassland Society of southern Africa, 9, 67–92.Google Scholar
  105. 105.
    Trollope, W. S. W. (1982). Ecological effects of fire in South African Savannas. In B. J. Huntley & B. H. Walker (Eds.), Ecology of Tropical Savannas (pp. 292–306). Berlin, Germany: Springer-Verlag.Google Scholar
  106. 106.
    Trollope, W. S. W. (1984). Fire behaviour. In P. d. V. Booysen & N. M. Tainton (Eds.), Ecological effects of fire in South African ecosystem (pp. 199–218). Berlin, Germany: Springer-Verlag.Google Scholar
  107. 107.
    Trollope, W. S. W. (1984). Fire in savanna. In P. d. V. Booysen & N. M. Tainton (Eds.), Ecological effects of fire in South African ecosystem (pp. 149–175). Berlin, Germany: Springer-Verlag.Google Scholar
  108. 108.
    Trollope, W. S. W. (1993). Fire regime of the Kruger National Park for the period 1980–1992. Koedoe, 36, 45–52.Google Scholar
  109. 109.
    Trollope, W. S. W. (1999). Veld burning: Savanna. In N. Tainton (Ed.), Veld management in South Africa (pp. 236–242). Pietermaritzburg, South Africa: University of Natal Press.Google Scholar
  110. 110.
    Trollope, W. S. W., & Tainton, N. M. (1986). Effect of fire intensity on the grass and bush components of the Eastern Cape thornveld. Journal of the Grassland Society of Southern Africa, 3, 37–42.Google Scholar
  111. 111.
    Trollope, W. S. W., Trollope, L. A., Biggs, H. C., Pienaar, D., & Potgieter, A. L. F. (1998). Long-term changes in the woody vegetation of the Kruger National Park, with special reference to the effects of elephants and fire. Koedoe, 41, 103–112.Google Scholar
  112. 112.
    Tyson, P. D., & Dyer, T. G. J. (1978). The predicted above-normal rainfall of the seventies and the likelihood of droughts in the eighties in South Africa. South African Journal of Science, 74, 372–377.Google Scholar
  113. 113.
    Van Langevelde, F., van de Vijver, C. A. D. M., Kumar, L., van de Koppel, J., de Ridder, N., van Andel, J., et al. (2003). Effects of fire and herbivory on the stability of savanna ecosystems. Ecology, 84, 337–350.Google Scholar
  114. 114.
    Van Wijngaarden, W. (1985). Elephantstreesgrassgrazers: Relationships between climate, soil, vegetation and large herbivores in a semi-arid savanna ecosystem (Tsavo, Kenya) (ITC publication number 4). Enschede, Netherlands: International Institute for Aerospace Survey and Earth SciencesGoogle Scholar
  115. 115.
    Van Wilgen, B. W., Biggs, H. C., O’Regan S. P., & Marè, N. (2000). A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. South African Journal of Science, 96, 167–178.Google Scholar
  116. 116.
    Viljoen, A. J. (1988). Long term changes in the tree component of the vegetation in the Kruger National Park. In I. A. W. MacDonald & R. J. M. Crawford (Eds.), Long-term data series relating to southern Africa’s renewable natural resources. (South African National Scientific Programmes report no. 157, pp. 310–315). Pretoria, South Africa: CSIR.Google Scholar
  117. 117.
    Wackernagel, A. (1993). Elephants and vegetation: Severity, scale and patchiness of impacts along the Linyanti River, Chobe district, Botswana. M.Sc. thesis, Johannesburg, South Africa: University of the Witwatersrand.Google Scholar
  118. 118.
    Walker, B. H., & Noy-Meir, I. (1982). Aspects of the stability and resilience of savanna ecosystems. In B. J. Huntley & Walker, B. H. (Eds), Ecology of Tropical Savannas (pp. 556–590). Berlin, Germany: Springer-Verlag.Google Scholar
  119. 119.
    Walter, H. (1971). Ecology of tropical and subtropical vegetation. Edinburgh, Scotland, UK: Oliver and Boyd.Google Scholar
  120. 120.
    Weber, G. E., Jeltsch, F., Van Rooyen, N., & Milton, S. J. (1998). Simulated long-term vegetation response to grazing heterogeneity in semi-arid rangelands. Journal of Applied Ecology, 35, 687–699.Google Scholar
  121. 121.
    Westoby, M., Walker, B., & Noy-Meir, I. (1989). Opportunistic management for rangelands not at equilibrium. Journal of Range Management, 42, 266–274.Google Scholar
  122. 122.
    Wiegand, K., Ward, D., Thulke H. H., & Jeltsch, F. (2000). From snapshot information to long-term population dynamics of Acacias by a simulation model. Plant Ecology, 150, 97–114.Google Scholar
  123. 123.
    Witkowski, E. T. F., & Garner, R. D. (2000). Spatial distribution of soil seed banks of three African savanna woody species at two contrasting sites. Plant Ecology, 149, 91–106.Google Scholar
  124. 124.
    Yeaton, R. I. (1988). Porcupines, fires and the dynamics of the tree layer of the Burkea africana savanna. Journal of Ecology, 76, 1017–1029.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.The Ecology Centre, School of Integrative BiologyUniversity of QueenslandBrisbaneAustralia

Personalised recommendations