Advertisement

Environmental Modeling & Assessment

, Volume 12, Issue 1, pp 1–11 | Cite as

A mathematical model to estimate errors associated with closed flux chambers

  • D. G. M. Senevirathna
  • G. Achari
  • J. P. A. Hettiaratchi
Article

Abstract

Errors associated with the closed flux chamber technique, used to measure surface emissions from landfills, were investigated by using a combination of numerical modeling and laboratory studies. A transient-state, advective–dispersive–reactive model was developed and used in conjunction with its steady-state version to quantify the errors associated with closed flux chambers. In developing the model, all four major gases, CH4, O2, CO2, and N2, and the oxidation of CH4 to CO2 were considered. Laboratory experiments were conducted on a monolayered as well as a two-layered landfill cover system to calibrate and verify the model. The model was used to develop a plot of the percentage errors associated with closed flux chambers of different dimensions and surface flux rates.

Keywords

landfills closed flux chambers numerical model surface emission laboratory investigation errors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bogner, M. Meadows and P. Czepiel, Soil Use Manag. 13 (1997) 268–277.CrossRefGoogle Scholar
  2. 2.
    P.M. Czepiel, B. Mosher, P.M. Crill and R.C. Harris, J. Geophys. Res. 110(D11) (1996) 16721–16729.CrossRefGoogle Scholar
  3. 3.
    M.D.N. Perera, J.P.A. Hettiaratchi and G. Achari, J. Environ. Eng. Sci. 1 (2002) 451–463.CrossRefGoogle Scholar
  4. 4.
    R.W. Healy, R.G. Striegl, T.F. Russel, G.L. Hutcinson and G.P. Livingston, Soil Sci. Soc. Am. J. 60 (1996) 740–747.CrossRefGoogle Scholar
  5. 5.
    W.A. Jury, J. Letley and T. Collins, Soil Sci. Soc. Am. J. 46 (1982) 250–255.CrossRefGoogle Scholar
  6. 6.
    G.L. Hutchinson and A.R. Mosier, Soil Sci. Soc. Am. J. 45 (1981) 311–315.CrossRefGoogle Scholar
  7. 7.
    A.D. Matthias, D.N. Yarger and R.S. Weinbeck, Geophys. Res. Lett. 5(9) (1978) 765–768.Google Scholar
  8. 8.
    C.W. Fetter, Contaminant Hydrogeology (Macmillan Publishing Company, New York, 1992).Google Scholar
  9. 9.
    C. Zheng and G.D. Bennett, Applied Contaminant Transport Modeling, 2nd edn. (John Wiley and Sons Inc., New York, 2002).Google Scholar
  10. 10.
    Y. Jin and W.A. Jury, Soil Sci. Soc. Am. J. 60 (1996) 66–71.CrossRefGoogle Scholar
  11. 11.
    C.R. Wilke, J. Chem. Eng. Prog. (1950) 46(2) 95–104.Google Scholar
  12. 12.
    N.H. Chen and D.F. Othmer, J. Chem. Eng. Data 7(1) (1962) January 37–41.CrossRefGoogle Scholar
  13. 13.
    R.S. Cherry and D.N. Thompson, Biotechnol. Bioeng. 56(3) (1997) November 5 330–339.CrossRefGoogle Scholar
  14. 14.
    L.A.K. Perera, G. Achari and J.P.A. Hettiaratchi, ASCE J. Environ. Eng. (2002) May 461–471.Google Scholar
  15. 15.
    S.C. Chapra and R.P. Canale, Numerical Methods for Engineers with Programming and Software Applications, 3rd edn. (WCB/McGraw-Hill, 1998).Google Scholar
  16. 16.
    L.A.K. Perera, G. Achari and J.P.A. Hettiaratchi, J. Environ. Inform. 4(1) (2004) 11–27.Google Scholar
  17. 17.
    D.G.M. Senevirathna, G. Achari and J.P.A. Hettiaratchi, Can. J. Civ. Eng. (2006) (in press).Google Scholar
  18. 18.
    A.D. Matthias, A.M. Blackmer and J.M. Bremner, J. Environ. Qual. 9(2) (1980) 251–255.CrossRefGoogle Scholar
  19. 19.
    G. Borjesson and B. H. Svensson, Waste Manag. Res. 15 (1997) 33–54.CrossRefGoogle Scholar
  20. 20.
    A.N. Nozhevnikova, A.B. Lifshitz, V.S. Lebdev and G.A. Zavarzin, Chemosphere 26(1–4) (1993) 401–417.CrossRefGoogle Scholar
  21. 21.
    D.C. Hovde, A.C. Stanton, T.P. Meyers and D.R. Matt, J. Atmos. Chem. 20 (1995) 141–162.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • D. G. M. Senevirathna
    • 1
  • G. Achari
    • 1
  • J. P. A. Hettiaratchi
    • 1
  1. 1.Department of Civil EngineeringUniversity of Calgary2500 University Drive, Calgary, AlbertaCanada

Personalised recommendations